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Abstract

In these notes we give outlines for a proof that every object in a path
category is an internal Kan complex. We show that path categories are
closed under (homotopical) inverse diagrams, and that the category of
path categories is a fibration category. We moreover give the first steps
in showing that the evaluation functor from homotopical semisimplicial
objects in a path category to the path category itself, is a weak equivalence.

1 Introduction

As the name suggests, the main concept of homotopy type theory is to study
the way that techniques from homotopy theory can be applied to type theory.
The idea can be roughly described as follows. Given a type A, and two ele-
ments a and b of type A, one can consider a new type which is the identity type;
it is denoted as IdA(a,b) and consists of elements which can be interpreted as
’proofs that a and b are the same’. That these identity types are not necessarily
vacuous concepts and empty types, and more interestingly, give A the structure
of a groupoid, was first shown by Hoffman and Streicher in [6]. A natural step
next step is to consider the identity type of two elements α,β in IdA(a,b). As
the elements of IdA(a,b) could be interpreted as paths between points a and
b, the identity type IdIdA(a,b)(α,β) intuitively consists of homotopies between
α and β. As we can inductively define higher identity types, we end up with
the idea that a type A should have the structure of an ∞-groupoid. This idea
that A has such a structure was proven in [13]. More precisely, van den Berg
and Garner here show that the types, interpreted as objects in their associated
syntactic category, are internal weak ∞-groupoids.
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Over the past years, there have been various attempts to abstract the structure
of a syntactic category to a broader, cleaner, pure categorical notion, capturing
all of the relevant homotopical structures. Most of these structures look like
fibration categories, as defined by Brown in [2], but with some extra axioms.
Among them are the type-theoretic fibration categories, as defined by Shulman
in [11], tribes, as defined by Joyal in [7], identity type categories as defined by
van den Berg and Garner in [13], and path categories, as defined by van den
Berg and Moerijk in [14]. That the syntactic categories of dependent type theo-
ries indeed satisfies these properties is mostly characterized by the existence of
certain factorisation systems, as studied in [5].

A natural question one can ask is whether in these categorical structures, we
also have that every object can be interpreted as an internal∞-groupoid, giving
a nice generalisation of van den Berg and Garner’s result. It has been shown in
[1] that this holds true for the identity type categories. An attempt to transfer
this proof to path categories hasn’t yet proven to be fruitful, as can be read
in [9]. In this paper, we give outlines and first steps for another approach.
The aim is to show that every object in some sense is weakly equivalent to an
internal Kan complex. To do this, we first show that given a path category
C and an inverse category I , a certain subcategory of the functor category CI
has the structure of a path category. In particular, we then have path category
structure on the semisimplicial objects in C. For the full subcategory consisting
of all homotopical semisimplicial objects, that is, the category consisting of all
semisimplicial objects in which every map is a weak equivalence, we want to
show that its evaluation functor to C is a weak equivalence of path categories,
that is, an equivalence of categories for the induced functor on their homotopy
categories. This will show that we can picture every object in C as the bot-
tom element of a homotopical semisimplicial object. Then, by taking its global
sections, we obtain a semisimplicial set, for which we want to show that it has
fillers for all horns.
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2 Inverse diagrams on path categories

We will briefly give the definition of a path category for the sake of complete-
ness, but we refer to [14] for all relevant results and proofs on path categories.

Definition 1. A category C with two classes of maps, being the weak equivalences
and fibrations, is called a path categry or category with path objects, if the
following axioms are satisfied:

i Fibrations are closed under composition.

ii Pullbacks of fibrations exists and are fibrations again.

iii Pullbacks of acyclic fibrations are acyclic fibrations.

iv Weak equivalences satisfy 2-out-of-6.

v Isomorphisms are acyclic fibrations and every acyclic fibration has a section.

vi For every object X there is a path object PX.

vii C has a terminal object and every map X→ 1 is a fibration.

As mentioned in the introduction, we want to show that there is a canonical
semisimplicial object which we can relate to any object in a path category, up to
homotopy. To show that this is true we first want to show that path categories
are closed under inverse categories. To do this, we almost mirror the proof
given in [11] that type-theoretic fibration categories are closed under inverse
diagrams. We also make use of ideas used in [4]. Let us first give some basic
definitions on inverse categories.

Definition 2. A category I is called an inverse category if the relation ’y receives
a non-identity arrow from x’ is well founded. Write y ≺ x for this relation. The
rank ρ(x) of an object x in I is defined as the supremum

sup
y≺x

(ρ(y) + 1).

We define the ordinal rank1 of the category I as

sup
x∈I

(ρ(x) + 1).

1Mostly just abbreviated as ’rank’, if the context is clear.
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For now, we always write I for an inverse category and C for a path category,
unless stated otherwise. For an object x in I we obtain a subcategory x � I of
the coslice category, excluding only the identity. This is itself a inverse category
with ordinal rank equal to the rank of x.

We are interested in diagrams A of I in a path category C. We only want
to work with certain ’nice’ diagrams of I in C, for which appropriate limits
exists in C. This makes use of the notion of a matching object.

Definition 3. Given a diagram A in C defined on the subcategory {y | y ≺ x},
we write MxA for the limit of the diagram, precomposed with the forgetful functor
x� I → {y | y ≺ x}. It is called the matching object.

We can extend a diagram which is defined on {y | y ≺ x} to a diagram on
{y | y � x} by defining an object Ax and a map Ax→MxA. In order to study a
path category structure on CI , or an appropriate subcategory, we have to define
what our fibrations will be. These are given by the so called Reedy fibrations.

Definition 4. Let A and B be two diagrams of I in C, and let f : A→ B a natural
transformation. We call f a Reedy fibration if A and B have all matching objects,
and the map Ax→MxA×MxB Bx, as in the following diagram:

Ax

MxA×MxB Bx Bx

MxA MxB

is a fibration in C.

These Reedy fibrations will be the fibrations in the path category structure. The
weak equivalences will be the pointwise weak equivalences. With this notion of
Reedy fibrations, a diagram A is fibrant if it has all matching objects, and all
the maps Ax → MxA are fibrations. We will often write ax for this fibration
Ax→MxA.

Definition 5. A path category C has Reedy I-limits if for every Reedy fibrant A
and B, and a morphism f : A→ B, we have that
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i A has a fibrant limit in C,

ii limf is a fibration if f is,

iii limf is a weak equivalence if f is.

We call I admissible for C if C has (x� I)-limits for all x in I .

We are now ready to state and prove our main theorem

Theorem 6. Let I be admissible for C. Then the full subcategory (CI )f consisting
of all Reedy fibrant diagrams in CI has the structure of a path category.

Proof. We will carefully check that all axioms of a path category are satisfied.

i Fibrations are closed under composition. Let f : A → B and g : B → C be
Reedy fibrations. We want to show that g ◦ f is a Reedy fibration. Clearly,
A and C have all matching objects. Each map Cx → MxC is a fibration
because C is fibrant. Hence, the pullbacks MxA×MxCCx exist. To show that
the map from Ax to this pullback is a fibration, we consider the following
diagram

Ax MxA×MxB Bx MxA×MxC Cx MxA

Bx MxB×MxC Cx MxB

Cx MxC

The three squares are all pullbacks by elementary theory on pullbacks. We
now see that the map Ax → MxA ×MxC Cx factorises as the map Ax →
MxA ×MxB Bx, which is a fibration, followed by the map MxA ×MxB Bx →
MxA×MxC Cx, which is the pullback of a fibration and hence a fibration.

ii Pullbacks of fibrations exists and are fibrations again. First, let us note that
for a Reedy fibration g : B→ C, all its components are fibrations in C. The
map Bx → Cx is a composition of the fibration Bx → MxB ×MxC Cx and
the pullback of the map MxB→MxC. This map MxB→MxC is limx�I f ,
and hence a fibration, since C has all Reedy (x� I)-limits. Since every gx is
a fibration, we can conclude that the pullback of the fibration exists in CI ,
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as pullbacks are computed pointwise.

For the pullback to be in (CI )f , it has to be fibrant. I.e, the map (A×CB)x→
Mx(A×C B) �MxA×MxCMxB must be a fibration. To see this, we note that
the map factorises through Ax ×MxCMxB as in the following diagram

(A×C B)x � Ax ×Cx Bx Ax ×MxCMxB MxA×MxCMxC MxB

Ax MxA MxC

The map Ax×MxCMxB→MxA×MxCMxB is a fibration as it is the pullback
of Ax →MxA. The map Ax ×Cx Bx → Ax ×MxCMxB is a fibration too, as
will become clear from the following diagram:

Ax ×Cx Bx Bx

Ax ×MxCMxB MxB×MxC Cx MxB

Ax Cx MxC

We now want to show that the pullback of g is again a fibration. First
note that A×C B has all matching objects, as we have that

lim
x�I

(A×c B) � lim
x�I

A×limx�I C lim
x�I

B �MxA×MxCMxB,

where the last pullback exists as the map MxB → MxC is a fibration by
an earlier remark. It remains to show that the map (A×C B)x →Mx(A×C
B)×MxAAx is a fibration. First consider the following diagram

Ax ×Cx Bx Bx

Ax ×Cx (MxB×MxC Cx) MxB×MxC Cx MxB

Ax Cx MxC
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All the squares are pullbacks. We claim that the map Ax ×Cx Bx → Ax ×Cx
(MxB ×MxC Cx) is the map we are looking for. First note that Ax ×Cx
(MxB ×MxC Cx) is isomorphic to Ax ×MxCMxB. Now the following square
shows that this is in fact isomorphic to Mx(A×C B)×MxAAx.

(MxA×MxCMxB)×MxAAx Ax

MxA×MxCMxB MxA

MxB MxC

iii Pullbacks of acyclic fibrations are acyclic fibrations. Immediate consequence of
the previous proof and the fact that acyclic fibrations in (CI )f are pointwise
acyclic fibrations.

iv Weak equivalences satisfy 2-out-of-6. Immediate.

v Isomorphisms are acyclic fibrations, and every acyclic fibration has a section. Let
f : A→ B an isomorphism. In particular, all its components are acyclics
and hence f is a weak equivalence and all its components are fibrations.
Let us now show that it is a fibration. Because A and B are fibrant, they
have all matching objects. Because an isomorphism is pulled back to an
isomorphism, we have that Ax→MxA×MxB ×Bx �MxA is a fibration as A
is fibrant.

We now want to show the existence of a section. We will do this by in-
duction on the rank of I .2 The base case is clear, as for a discrete inverse
diagram we can take just the pointwise sections. Now, let us assume that it
holds for diagrams of rank n, and let I be a diagram of rank n+1. Consider
the full subcategory J consisting of all the objects in I with rank lower than
n. Let f : A→ B be an acyclic fibration on the diagram I . In particular,
it is an acyclic fibration between A|J and B|J . Hence, we have a section
g̃ : B|J → A|J . We now want to extend this section to the whole of B. Let x
an element of rank n. For α : x→ y, we write lB,α for the map from MxB

2Let us note that we only consider consider induction on natural numbers. Doing the
transfinite case might be interesting too, but is not inside the scope of these notes.
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to By , and bx for the map Bx →MxB. Note that we have lB,α ◦ bx = B(α).
We obtain a cone of MxB on the diagram induced by A on x � I , defined
by g̃y ◦ lB,α for each α : x→ y. Because g̃ is natural by induction hypothe-
sis, this is indeed a cone. By the universality of the limit we obtain a map
ux :MxB→MxA, with the property that lA,α ◦ux = g̃y ◦ lB,α . This ux is the
section of (lf )x :MxA→MxB due to the universality of MxB. That is, if
we consider the limiting cone MxB, we see that

lB,α ◦ (lf )x ◦ux = fy ◦ lA,α ◦ux = fy ◦ g̃y ◦ lB,α = lB,α

and hence (lf )x ◦ ux = 1. Now note that the map 〈ax, fx〉 is an acyclic
fibration by basic reasoning. Hence, we have a section sx of this map. We
now claim that the map gx := sx ◦ 〈ux ◦ bx, id〉 gives us the desired section
of fx. From now on, we will write gy for the previously used g̃y . Let us show
that g now is a natural transformation, and that it is indeed a section.

(a) This defines a natural transformation g : B→ A. For maps between two
objects of rank lower than n we use that g̃ already was natural. Let us
look at a map α : x→ y. We want to show that the following diagram
commutes

Bx By

Ax Ay

gx

B(α)

gy

A(α)

Let us compute

A(α) ◦ gx = A(α) ◦ sx ◦ 〈ux ◦ bx, id〉
= lA,α ◦ ax ◦ sx ◦ 〈ux ◦ bx, id〉
= lA,α ◦πMxA ◦ 〈ax, fx〉 ◦ sx ◦ 〈ux ◦ bx, id〉
= lA,α ◦πMxA ◦ 〈ux ◦ bx, id〉
= lA,α ◦ux ◦ bx
= gy ◦ lB,α ◦ bx
= gy ◦B(α)

(b) This is a section of f . We compute

fx ◦ gx = πBx ◦ 〈ax, fx〉 ◦ gx
= πBx ◦ 〈ax, fx〉 ◦ sx ◦ 〈ux ◦ bx, id〉
= πBx ◦ 〈ux ◦ bx, id〉
= id.
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vi For every object there is a path object. Let A : I → C in (CI )f . We want to
factorise A→ A ×A as a weak equivalence followed by a fibration. Again
we do this by induction. The base case is clear, as for a discrete category
we can just take the path object factorisation induced by the one in C. Now,
let I be an inverse category of rank n + 1, and let J as before. Let x of
rank n. We can write PAJ for the path object of A restricted to J . Because
we have all Reedy (x � I)-limits, we have the limits rMxA :MxA→MxPA
and (sMxA, tMxA) : MxPA → MxA ×MxA, which are respectively a weak
equivalence and a fibration. So, we have a path object on MxA which is
the limit of the other path objects. We will now define PAx, which will
hopefully extend PAJ to a functor PA. Recall that we write ax for the
fibration Ax→MxA. We consider the following pullback

U Ax ×Ax

PMxA MxA×MxA

ax×ax

(sMxA,tMxA)

We obtain a map from Ax to the pullback, 〈rPMxA ◦ ax,∆Ax〉. We factorise
this map as a weak equivalence followed by a fibration, and obtain a factor-
ization of the diagonal ∆Ax as summarized in the following diagram:

Ax

PAx

U Ax ×Ax

MxA PMxA MxA×MxA

rx

∆Ax

ax

ax×ax

rMxA (sMxA,tMxA)

the map rx is by definition a weak equivalence, and the resulting map
(sx, tx) : PAx → Ax × Ax is a fibration since it is the composition of a fi-
bration with the pullback of a fibration. The map PAx → PMxA which
is needed for PA to be fibrant, is given by the obvious composition in the
diagram, which is indeed a fibration since ax×ax is a fibration, and the map
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PAx→ PMxA is a composition of the fibration PAx→U and the pullback
of ax×ax. We will denote this map by pax. It remains to show that this really
extends PAJ to PA, and that rA and (sA, tA) are well defined natural trans-
formations. Note that we write rA for the natural transformation A→ PA
as a whole, and rx for its components. The map PA(α) : PAx→ PAy is the
map from pax followed by the projection on PAy corresponding to the map
α.

(a) PA is a funtor. Let α : x→ y and β : y→ z. We want that PA(β ◦α) =
PA(β) ◦ PA(α). This just follows from the properties of PMxA being
the limit.

(b) rA is a natural transformation. Let α : x→ y. We have to show that the
following diagram commutes

Ax PAx

Ay PAy

rx

A(α) PA(α)
ry

Note that by definition of rx and pax, the following diagram commutes

Ax PAx

MxA PMxA

ax

rx

pax
rMxA

The following square commutes by definition of rMxA.

MxA PMxA

Ay PAy

π

rMxA

π
ry

with the vertical maps being the appropriate projections. Since A(α) is
defined by composing ax with this appropriate projection, and similar
for PA(α), we obtain ry ◦ A(α) = PA(α) ◦ rx by pasting these two
commuting squares above together, or, writing π for the projection, we
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get
ry ◦A(α) = ry ◦π ◦ ax

= π ◦ rMxA ◦ ax
= π ◦ pax ◦ rx
= PA(α) ◦ rx

(c) (sA, tA) is a natural transformation. This is a diagram chase very similar
to the previous one.

vii We have a terminal object, and every object is fibrant. Immediate.

Whew! That was quite some work. The following lemma will ensure us that
actually for many inverse categories, we indeed have that they are admissible
for a path category C.

Lemma 7. Let I any finite inverse category. Then, the path category C has all Reedy
I-limits.

Proof. Exact copy of Lemma 11.8 in [11]. Because the construction of the limits
will be useful in the discussion on the evaluation functor, we sketch the outlines.
We do this by induction on the rank of I . The base case is an exact copy of
Lemma 11.6 in [11]. Now suppose that it holds for finite inverse categories with
rank n. Let I such that ρ(I) = n+1. Write J for the full subcategory of objects y
with ρ(y) < n. Let A be a Reedy fibrant diagram in CI . Note that A|J is fibrant
in CJ . The limit limI A arises in the following pullback diagram:

limI A
∏
ρ(x)=nAx

limJ A|J
∏
ρ(x)=nMxA

The limit in the left lower corner exists by the induction hypothesis, and A|J
being fibrant. The map on the right is the product of fibrations and hence itself
a fibration. Therefore, the pullback exists.

Corollary 8. The full subcategory (C∆
op
i )f of Reedy fibrant semisimplicial objects

in C, has the structure of a path category.
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As mentioned, we are interested in semisimplicial objects in which only weak
equivalences play a role. They are called homotopical diagrams.

Lemma 9. Given admissible I . The full subcategory D ⊆ (CI )f of homotopical
diagrams has the structure of a path category.

Proof. First note that the terminal object is clearly homotopical. As we define
the subcategory to be full, it is already clear that fibrations are closed under
compositions, weak equivalences satisfy 2-out-of-6, every object is fibrant, iso-
morphisms are acyclic fibrations and acyclic fibrations have sections. It remains
to show that pullbacks of fibrations exist, and that D has path objects. Or
rather, that a pullback of a fibration is again homotopical. This follows pre-
cisely by Lemma 11.7 of Shulman, where the back face is the pullback diagram
of (A ×C B)x, and the front is that of (A ×C B)y , for the map α : x → y in I .
Now for the path objects. Let PA be the path object of homotopical digram
A in (CI )f . We know that rx : Ax → PAx are all weak equivalences. Now for
α : x→ y in I we have the naturality square

Ax PAx

Ay PAy

A(α)

rx

PA(α)
ry

where we know that A(α), rx and ry are weak equivalences, and hence PA(α)
is, by 2-out-of-3.

3 The fibration category of path categories

In [8], it is shown that the category of all fibration categories has the structure of
a fibration category for an appropriate notion of weak equivalence and fibration.
We will do the same for an appropriate subcategory of all path categories, with
a notion of weak equivalence which is the same as the one used in [8], and with
a notion of fibration which is somewhere ’in between’ the notions they use for
fibrations between tribes and between fibration categories.

Definition 10. Let C and D two path categories. A functor F : C → D is called
exact if it preserves weak equivalences, fibrations, the terminal object and pullbacks
along fibrations.
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Definition 11. Let C and D two path categories. An exact functor F : C →D is an
equivalence of path categories or a weak equivalence if the induced functor

F̃ : Ho(C)→Ho(D)

is an equivalence of categories in the ordinary sense.

There is a nice characterization of such weak equivalences given by Cisinski in
[3].

Theorem 12. Let F : C →D an exact functor between path categories. Then F is a
weak equivalence iff it reflects weak equivalences, and for every f : Y → FX in D,
we can find a map u : X ′→ X in C, and weak equivalences v : Y ′→ Y and Y ′ to
FX ′, such that the following diagram commutes:

Y ′ FX ′

Y FX

w

v Fu

f

This last property is also called the approximation property.

Proof. [3]

Definition 13. An exact functor F : C → D between path categories is a fibration
of path categories if it satisfies the following properties:

i It is an isofibration: for every X in C and an isomorphism f ′ : FX→ Y , there
is an isomorphism f : X→ Y ′ such that Ff = f ′ .

ii It has the lifting property for factorizations: Given a morphism f : X→ Y in
C, and a factorization Ff = p′◦i′, with p a fibration and i a weak equivalence,
there is a factorization f = p ◦ i such that Fp = p′ and Fi = i′ .

iii It has the lifting property for pseudofactorizations: Given a morphism f :
X→ Y in C and a diagram

FX FY

Z ′ W ′

Ff

i′

s′
u′
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where i′ is an acyclic fibration, s′ a weak equivalence and u′ is a fibration, there
exists a diagram

X Y

Z W

f

i

s

u

such that Fi′ = i and Fs′ = s and Fu′ = u.

iv It has the lifting property for acyclic fibrations: if f : X → Y is an acyclic
fibration in C, and s′ is a section Ff , then there is a section s of f such that
Fs = s′ .

The following lemma, due to [12], gives a useful characterization of acyclic
fibrations between path categories.

Lemma 14. An exact functor F : C → D is an acyclic fibration iff the functor is a
fibration, reflects weak equivalences and moreover it satisfies the following property:
given a fibration f : Y → FX in D, there is a fibration f ′ : Y ′→ X in D such that
Ff ′ = f .

Proof. Suppose F : C → D satisfies the properties in the lemma. To show it is
an acyclic fibration, we have to show that F has the approximation property.
Let f : Y → FX a morphism in D, factorize the map as

Y P FXw p

with p a fibration and w a weak equivalence. Then we have some fibration
p′ : P ′ → X such that Fp′ = p. This now all fits in the following commuting
diagram:

Y FP ′

Y FX

w

Fp′

f

which precisely is the diagram we want for the approximation property to hold,
and hence F is an acyclic fibration.
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Now suppose that F is an acyclic fibration, and let f : Y → FX a fibration
in D. We use the approximation property to get a diagram

Y ′ FX ′

Y FX

w

v Fu
f

with v and w weak equivalences. The following pullback exists since f is a
fibration

P FX ′

Y FX

p1

p0 Fu
f

Now factorize the map 〈v,w〉 : Y ′→ P as

P Q Pi g

with i a weak equivalence and g a fibration. We now have the following diagram

Q FX ′

Y FX

p0◦g

p1◦g

Fu

f

Note that since p0◦g◦i = v and v and i being weak equivalences, the composite
p0 ◦ g is a weak equivalence by 2-out-of-3. By a similar argument p1 ◦ g is a
weak equivalence, and it is also a fibration since p1 and g both are fibrations.
Hence we have a diagram in d to which we can apply the lifting property for
pseudofactorizations since F is a fibration, and in particular we obtain some
f ′ : Y ′→ X such that Ff ′ = f .

Theorem 15. With the notions of weak equivalences and fibrations as above, the
category Pth of path categories and exact functors, is a fibration category.

Proof. We check the axioms.

i Fibrations are closed under composition. Immediate.
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ii The pullback of a fibration along any other map exists and is again a fibration.
Let F : C → D and G : E → D exact functors, and G a fibration of path
categories. First we show that C ×D E has the structure of a path category,
where the fibrations and weak equivalences both are defined pointwise. The
only nontrivial axioms to check are the existence of path objects and the
sections of acyclic fibrations. Let us first show that we have path objects.
Let (X,Y ) in the pullback, and let

X PX X ×XrX (sX ,tX )

a path object of X. Applying F gives a path object of FX, since F preserves
weak equivalences, fibrations and products, being a pullback of fibrations.
Since FX = GY , and G(Y × Y ) = Y × Y , we can apply the lifting property
for factorizations and obtain

Y P Y Y ×YrY (sY ,tY )

such that GPY = FPX and GrY = FrX and G(sY , tY ) = F(sX , tX). This gives
us a path object

(X,Y ) (PX,P Y ) (X ×X,Y ×Y )
(rX ,ry ) ((sX ,tX ),(sY ,tY ))

where we implicitly identify (X,Y )× (X,Y ) with (X ×X,Y ×Y ), since limits
commute with limits.

Let’s now move to the section of acyclic fibrations. Let (f ,g) : (X,Y ) →
(X ′,Y ′) an acyclic fibration. Then f is an acyclic fibration with a section
sf , and Fsf is a section of Ff and hence also of Gg , as they are the same.
By the lifting property of sections of acyclic fibrations, we obtain a section
sg : Y → Y ′ such that Gsg = Fsf , and hence (sf , sg) is a section of (f ,g).

That the projection p0 : C ×D E → C is a fibration is also mostly routine.
We give a short argument for the isofibration part, and leave the other
three to the reader. If (X,Y ) are in the pullback, and we have an isomor-
phism i : X → Z in C. Then Fi : FX → FZ is an isomorphism, and hence
Fi : GY → FZ is, as they are the same. Because G is a fibration we obtain
ĩ : Y → Z ′ such that Gĩ = Fi, and hence (i, ĩ) is in the pullback.
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iii The pullback of an acyclic fibration along any other map is again an acyclic
fibration. Let F : C →d and G : E →D again exact functors, and let G now
an acyclic fibration. In the previous part we have shown that p0 : C ×D ×E
is a fibration. It remains to show that it a weak equivalence too if G is. Let
us first show that p0 reflects weak equivalences. Suppose p0(f ,g) = f is a
weak equivalence. Then by exactness, Ff is a weak equivalence, and hence
Gg is. By the fact that G reflects weak equivalences since it is an acyclic
fibration, we have that g is a weak equivalence and hence (f ,g) is a weak
equivalence in C ×D E .

By our characterization of acyclic fibrations, it remains to show that a fi-
bration f : Z → X, where X comes from a pair (X,Y ) in C ×D E , can be
lifted to a fibration (f ,g) : (Z,W )→ (X,Y ) in C ×D E . Since f : Z→ X is a
fibration, so is Ff : FZ→ FX. Since FX = GY this is a fibration FZ→ GY .
Because G is an acyclic fibration we can find some fibration g :W → Y such
that Gg = Ff and in particular GW = FZ . This gives our fibration (f ,g) in
C ×D E , and hence p0 is an acyclic fibration.

iv Weak equivalences satisfy 2-out-of-3. Immediate.

v Isomorphisms are acyclic fibrations. Immediate.

vi For every object X there is a path object PX. Given a category C, write P C for
the path category (C•←•→)f ,h. Its objects are diagrams

X0 X01 X1x0 x1

where both x0 and x1 are acyclic fibrations. The map r : C → P C is given
by the constant diagram, and (s, t) : P C → C × C is given by evaluation on
0 and 1. We now have to show that r is a weak equivalence and (s, t) is a
fibration. It is clear that both are exact.

(a) r is a weak equivalence. It is clear that weak equivalences are reflected.
We show that the approximation property holds. With the notation as
in that theorem we have a map f : Y → FX, consisting of f0 : Y0→ X,
f1 : Y1 → X and f01 : Y01 → X. Now take Y ′ = rY01 and w = id.
Let u = rf01 and v such that v0 = y0 and v1 = y1 and v01 = id.
The resulting diagram in P C commutes, and both v and w are weak
equivalences.
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(b) (s, t) is a fibration.

i. Isofibration. Let (i0, i1) isomorphisms as in the following diagram

X01

X0 X1

Y0 Y1

x0

x1

i0 i1

As i0 and i1 are acyclic fibrations, and compositions of acyclic
fibrations are acyclic fibrations, putting Y01 = X01 and y0 = i0◦x0
and y1 = i1 ◦ x1 makes it into a valid isomorphism in P C.

ii. Lifting for factorizations. Let f : X → Y a map in P C, and let
f0 = p0 ◦w0 and f1 = p1 ◦w1. Define P0 to be the pullback of
p0 along y0. Obtain a map 〈f01,w0 ◦ x0〉 : X01→ P0. Analogous
obtain a map X01 → P1. Now let P the pullback of the maps
P0 → Y01 and P1 → Y01. Obtain a map X01 → P , which we
factorize as a weak equivalence followed by a fibration which then
induces the wanted factorization. Summarized in the following
diagram:

X01

X0 C01 X1

P

C0 P0 P1 C1

Y0 Y01 Y1

x0

〈f01,w0◦x0〉

w0
x1

〈f01,w1◦x1〉

w0 w1

p0 p1

y0

y1

iii. Lifting for pseudofactorizations. Let us have a diagram in C × C in
the similar notation as the definition. So, given i0 : Z0→ X0 and
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i1 : Z1→ X1 we want to define Y01 and a map to X01. We do this
very similar to the previous proof, by taking the pullbacks of i0
and x0 and of i1 and x1, and then take the pullback Y01 of those
pullbacks. What remains now is to apply the lifting property for
factorizations.

iv. Lifting for sections of acyclic fibrations. This follows from precisely
the same argument as the induction step in the proof that acyclic
fibrations in diagram categories have sections.

vii There is a terminal object and every map X→ 1 is a fibration. Immediate.

4 The evaluation functor

As mentioned in the introduction, we are interested in showing that the evalua-
tion functor, mapping a fibrant, homotopical semisimplicial object X• to its set
of vertices X0, is a weak equivalence. Unfortunately we are not yet able to show
that this functor is indeed a weak equivalence, but we can give two lemmas
which point us in the right direction.

Lemma 16. The functor ev0 reflects weak equivalences.

Proof. This follows by repeatedly applying 2-out-of-6. Given f• : X•→ Y• such
that f0 is weak equivalence, we have that f0 ◦ d0 = d0 ◦ f1, in which everything
except f1 is known to be a weak equivalence, and hence f1 is. Inductively fn is
a weak equivalence for every n.

Lemma 17. The functor ev0 is essentially surjective.

Proof. Let X in C. Set X0 = X and X1 = PX with (d0,d1) = (s, t). Now note that
we have cone on [2]�∆

op
+ → C with X as vertex and r to every X1. Obtain a

map 〈r, r, r〉 : X→M2X, and factorize it as

X X2 M2X
w2 x2

with w2 a weak equivalence and x2 a fibration. Now suppose we have obtained
Xn in a similar manner, as in a factorization

X Xn MnX
wn xn
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We obtain a cone on [n + 1] �∆
op
+ with vertex X and with maps wn to each

Xn. Factorize the resulting map X →Mn+1X to obtain Xn+1. Inductively this
defines a fibrant homotopical semisimplicial object X•.

However, the induced map on homotopy categories being full and faithful
turned out to be hard. For example when trying show fullness, one has to
extend a map f0 : ev0(X0)→ ev0(Y0) to a morphism of semisimplicial objects
f̃• : X•→ Y• such that f0 is homotopic to f̃0. Defining such a map is not easy,
since the semisimplicial structure has to be respected, which asks for many ho-
motopy coherence rules to be satisfied. The following lemma shows how one
can do the first level of such a construction.

Lemma 18. We can extend a map f0 : ev0(X•) → ev0(Y•) to a pair of maps
f0 : X0 → Y0 and f1 : X1 → Y1 such that they form the bottom of a morphism of
semisimplicial objects.

Proof. First, observe that di ' dj for every two face maps with same domain
and codomain. One can see this for the higher degree face maps by using the
simplicial identities for di ◦di , being di ◦di+1. Because di is a weak equivalence
it is a homotopy equivalence and hence

d−1i ◦ di ◦ di ' d
−1
i ◦ di ◦ di+1

and hence di ' di+1. That d0,d1 : X1 → X0 are homotopic follows because
d0 ◦ d2 = d1 ◦ d0, and these higher d2 and d1 were proven to be homotopic.

So, given f0 : X0 → Y0, define f̃1 := d−10 ◦ f0 ◦ d0. The following diagram
commutes up to homotopy

X1 Y1

X0 ×X0 Y0 ×Y0

f̃1

(d0,d1) (d0,d1)
f0×f0

and hence by Proposition 2.31 in [14] we can replace f̃1 by f1 such that it
commutes strictly.
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5 Conclusion and further research

We have shown in these notes that, as one can expect, many of the results
proven on fibration categories and tribes can be also proven for path cate-
gories. This gives the first steps into a proof that every object internally is an
∞-groupoid. Proving that the evaluation functor is a weak equivalence turned
out to be harder than expected. However, there is hope. In [10], Schwede has
proven that this evaluation functor is a weak equivalence for cosemisimplicial
objects in cofibration categories. Dualizing the appropriate parts, we can use
his proof to prove that for path categories this also holds. In fact, there is a
high chance that the proof can be simplified, since our path categories have a
stronger structure than fibration categories.

Something else worth looking at is whether the approximation property, which
we used to characterize the weak equivalences, can be modified to a somewhat
simpler statement. In path categories, the homotopy equivalences have a much
cleaner description than in an ordinary fibration category; they are precisely
the weak equivalences.

It is also interesting to investigate whether the functor ev0 is a fibration. At
a first glimpse, one can prove easily that the functor is an isofibration, and that
the lifting property for factorizations is satisfied. Proving this, the proof that
ev0 is a weak equivalence too is made easier by the characterization of acyclic
fibrations we gave in section 3.
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