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Abstract
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1 Introduction

Intuitionistic type theory is a foundational system for mathematics which was introduced
in the early ’70s by Swedish mathematician Martin-Löf. It is a further developed version
of the theory of types, which was introduced by Russell to overcome the paradoxes of set
theory. Intuitionistic type theory is the study of types and terms belonging to a type.
One can think of types as sets and terms as objects. However, in contrast to set theory,
where an element can appear in different sets, a term belongs to one and one type only.
Another difference between set theory and intuitionistic type theory is that all terms
and types are explicitly defined or constructed, hence the adjective intuitionistic. An
example is the type of natural numbers N, which can be characterized as the smallest
closure of the term 0 and successor terms S(n) for every n in N. A good introduction to
the subject is given in [1].

An important idea in intuitionistic type theory is that propositions are types. This
means that given a mathematical statement or proposition, there should exist a type
whose terms are proofs of that proposition. In fact, we identify a proposition with its
collection of proofs. We would like to point out one specific example of such a proposition.
Given a type A and terms a, b of type A, there should exist a type

IdA(a, b)

whose terms are proofs that a and b are equal as terms of A. We call this type the identity
type, and the terms a and b propositionally equal if the identity type is non-empty. The
terms of the identity types are generated by the canonical proof r(a) of type IdA(a, a).
For explicit syntax of the identity type we refer to [2].

Something wonderful happens if one thinks of a type A as a topological space and terms
a, b as points in this space. The identity type IdA(a, b) then can be thought of as the
space of paths between a and b. This gives a type A roughly the structure of a groupoid,
as every path has an inverse up to some higher structure. Using this interpretation of
type theory, Hofmann and Streicher have shown in their illuminating paper [3] that the
category of groupoids can serve a model or categorical semantics of intuitionistic type
theory. In other words, we can interpret the formal language of type theory in a category
in such a way that categorical operations have a meaningful type theoretic interpretation
and vice versa.

The geometrical interpretation of type theory does not end at the groupoid model of
Hofmann and Streicher. Given two terms ω, γ of type IdA(a, b), one can construct the
type

IdIdA(a,a)(ω, γ)

consisting of homotopies between paths. Iterating this yields the idea that types are
∞-groupoids, which has been formally shown by Van den Berg and Garner in [4]. In
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[5] this concept has been worked out in another way: they show that type theory can
be modelled in the category of simplicial sets. We see that there is an evident relation
between type theory and algebraic topology, by means of the categorical models of type
theory which have a topological nature. This relation has been foundational in the
development of homotopy type theory, which is a variant of type theory with an extra
axiom called univalence. Univalence is a formalization of the idea that mathematical
structures which can be identified up to some notion of equivalence or isomorphism should
be considered as the same structure. A more thorough examination of the philosophical
nature of the univalence axiom can be found in Awodey’s paper [6].

Another way to interpret type theory in category theory is by making use of the so called
syntactic category. Instead of modelling the language in a pre-existing category, as done
in the previous paragraph, we construct a category from the type theory. Roughly the
objects in the syntactic category of type theory are types, and morphisms between objects
are specific choices of terms. We refer to the second chapter in [7] for an explicit definition
of this syntactic category. Certain constructions in type theory induce objects satisfying
a universal property in the syntactic category. An example is the aforementioned natural
numbers type, which for standard intuitionistic type theory is interpreted by the natural
numbers object in its syntactic category. Another example is that of the product type,
which is interpreted by the usual categorical product.

Modifying the rules of the type theory or language modifies the properties of its
corresponding syntactic category. There are many variations of type theory, each with
different computation rules and type formers. In this thesis we are interested in a
variant of type theory which is coined objective type theory in [8]. Objective type theory
is conceptually similar to homotopy type theory, but has a slightly different syntax;
in objective type theory every appearance of judgemental equality is eliminated and
replaced by propositional equality. Two terms a, b in A are judgemental equal if the
statement a = b : A is derivable in the deductive system of the type theory. By the
nature of objective type theory the constructions in the type theory do not yield objects
with standard universal properties in its syntactic category, but objects with homotopy
universal properties. These structures are not strictly unique but are unique up to a
suitable notion of weak equivalence.

Abstracting the syntactic category of objective type theory yields what is called a
path category, originally introduced by Van den Berg and Moerdijk in [9], and which will
be the main object of study in this thesis. The structure of a path category is related
to that of a model category as introduced in [10], in the sense that there is a class of
fibrations and weak equivalences satisfying a list of properties. However, in contrast to
model categories, path categories do not have a weak factorization system, but only
something which is weaker: for a commuting square with a fibration on the right and
a weak equivalence on the left, there is a diagonal filler which makes the lower triangle
commute strictly, but the upper triangle only up to a certain notion of fibrewise homotopy.
A main example of a path category, besides the syntactic category of objective type
theory, is the category of topological spaces with fibrations being the Hurewicz fibrations
and the weak equivalences the homotopy equivalences. This reflects again the relation
between algebraic topology and type theory.
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Categorical semantics of type theory can be used to prove purely type theoretic
statements. An example is that of canonicity, proven in [11]. Canonicity states that,
given a certain type theory with a natural numbers type N , every closed term of the
natural numbers type is of the form Sn(0), where S denotes the successor operation.

Unfortunately, type theories which are related to objective type theory, such as
homotopy type theory, do not satisfy canonicity. However, it is conjectured that they
satisfy what is called homotopy canonicity : for every closed term a of natural numbers
type N , one can construct a term p of the identity type IdN (a, Sn(0)) for some n.
Proving homotopy canonicity would be interesting for both computational aspects of type
theory as well as its philosophical foundations. As type theory is used for proof checking
software, and homotopy type theory is as well, a constructive proof of homotopy canonicity
would give a way of transforming terms in types of canonical form. Philosophically,
homotopy canonicity would show that in some sense the univalence axiom does not
violate constructivity completely, as mentioned by Voevodsky in [12].

As mentioned, homotopy canonicity is currently unproven for objective type theory.
However, a proof that homotopy type theory satisfies homotopy canonicity has been
announced by Sattler and Kapulkin in their presentation [13]. The outline of their proof
suggests that this proof could very well also work for path categories and objective type
theory. Such a proof can be divided in two parts. There is a purely homotopy theoretical
side of the proof in which certain properties of the categorical semantics, in our case
path categories, are described. On the other hand there should be a soundness and
completeness result for the interpretation of the type theory in the categorical semantics.
In Section 4.6 we will give an informal outline of the proof.

We can now state the main motivation of this thesis, which is to provide all the
homotopy theory needed for the proof of homotopy canonicity. Explicitly this will mostly
consist of studying the category Pth of path categories and functors between them
preserving the path category structure, the exact functors. In particular we will study
the homotopy theory of Pth by endowing it with the structure of a fibration category,
which itself is a categorical structure similar to that of a path category.

However, the value of the results presented in this thesis is not limited to their role
in the proof of homotopy canonicity, but is also of independent interest. Among the
main contributions of this thesis are two proofs that objects in a path category carry
the structure of an ∞-groupoid. This shows that types in objective type theory have
the structure of an ∞-groupoid, which reflects the idea that many of the results on
homotopy type theory can be derived for objective type theory as well, as mentioned in [8].

Let us give a summary of the content and main contributions of this thesis:

Chapter 2 In Chapter 2 we give an introduction to path categories and review its
basic properties. We also describe a class of categories I, the inverse categories,
for which given a path category C we can endow the functor category [I, C] with
notions of fibrations and weak equivalences such that [I, C]f, the full subcategory on
the fibrant objects, forms a path category. Moreover we will describe the fibration
category of path categories. The main contribution presented in this chapter is
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that acyclic fibrations of path categories are surjective on objects and full.

Chapter 3 This chapter is devoted to the higher categorical properties of path
categories. We start by a quick review of theory on semisimplicial sets and we
introduce the notion of a frame. For a path category C the category of frames
Fr C consists of fibrant semisimplicial objects in C in which every component is
a weak equivalence. In particular, this category Fr C is a path category. By
endowing the category of semisimplicial sets with appropriate notions of fibrations
and weak equivalences, we get a path category ssSetf of fibrant semisimplicial
sets, or semisimplicial Kan complexes. Then, we will consider a pairing of weak
equivalences and semisimplicial sets, which we will use to mimic a proof of Schwede
presented in [14] of the fact that the canonical evaluation functor ev0 : Fr C → C
is a weak equivalence of path categories. The main contribution of this chapter
consists of a proof that the emphglobal sections functor Fr C → ssSetf, induced
by the functor HomC(1,−) : C → Set, is an exact functor of path categories.
Together with the fact that ev0 is a weak equivalence this gives the first proof to
the statement that objects in path categories are internal ∞-groupoids. We will
then review some notions of enriched categories in the context of path categories,
starting by enriching the category Fr C over semisimplicial sets inspired by the
works of Kapulkin and Szumilo [15]. We show that in the case of path categories
this enrichment is valued in fibrant semisimplicial sets. By work of Den Besten
in [16] it can be shown that there is a functor M : Pth→ GpdCat which sends
every path category to a canonical groupoid enriched category. We will show that
for an appropriate fibration category structure on GpdCat this functor is almost
an exact functor. The final contribution of this chapter is a proof that we can
compare the aforementioned enrichments by a semisimplicial counterpart of the
fundamental groupoid.

Chapter 4 In this chapter we study objects with homotopy universal properties in
path categories and give an informal summary of the proof of homotopy canonicity,
and how this thesis ties in with this proof. The contributions presented in this
chapter consists of proofs that the homotopy universal properties are stable under
weak equivalences of path categories.

Chapter 5 The “stranger in the midst” of this thesis is Chapter 5, in the sense
that it is not directly related to the proof of homotopy canonicity. In this chapter
we solve an open problem posed by Lobski in [17]. Using techniques introduced in
[18] we show that every object in a path category has the structure of an internal
Grothendieck ∞-groupoid in the sense of Maltsiniotis’ paper [19]. The latter is a
cleaner version of the definition of an internal ∞-groupoid as presented by Batanin
in [20], which is used by Van den Berg and Garner in [4]. The advantage of this
definition of an ∞-groupoid is that it reflects more of the nature of type theory
than the definition we use in Chapter 3, as described in the introduction of [4].
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2 Path categories and the fibration
category of path categories

This chapter is meant to be an introduction to path categories and the fibration category
of path categories. The first four sections are by no means original, and are mostly
based on, or cited from existing literature; mainly [9]. In the last two sections we derive
certain properties of the fibration category of path categories which are new and prove
themselves to be very useful in what is to come in later chapters.

2.1 Path categories

In this section we will give the definition of a path category and some of its basic
properties. For a more comprehensive introduction we refer to [9].

Definition 2.1. A path category is a category C with two designated classes of maps:
the fibrations and the weak equivalences. The maps which are both a fibration and a
weak equivalences are called acyclic fibrations. The following axioms should be satisfied:

(i) Fibrations are closed under composition.

(ii) Pullbacks of fibrations exist and are fibrations again.

(iii) Pullbacks of acyclic fibrations are acyclic fibrations.

(iv) Weak equivalences satisfy 2-out-of-6. That is, if we have three composable maps
fgh such that fg and gh are weak equivalences, then all f, g, h and fgh are weak
equivalences.

(v) Isomorphisms are acyclic fibrations and every acyclic fibration has a section.

(vi) For every object X there is a path object PX. That is, there is a factorization

X PX X ×Xr (s,t)

of the diagonal ∆ : X → X ×X, with r a weak equivalence and (s, t) a fibration.

(vii) C has a terminal object 1 and every map X → 1 is a fibration.

Remark 2.2. We observe some immediate consequences of the definitions. We first
note that 2-out-of-6 implies the more well known 2-out-of-3 statement, which says that
for two composable maps f and g, we have that if any two of the maps f, g, fg are
weak equivalences, the third is. It is also relevant to note, and implicitly used in axiom
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(vi), that all products exist; this follows from axioms (ii) and (vii). In particular, the
projection maps are fibrations. Moreover we note that by the fact that weak equivalences
satisfy 2-out-of-6 it follows that both s and t are weak equivalences and hence acyclic
fibrations. We will refer to these maps as source and target respectively. To the map r
we will refer as the constant path map.

The axioms of a path category are an extension of the axioms of a category of fibrant
objects as introduced by Brown in [21].

Definition 2.3. A category of fibrant objects, or a fibration category, is a category C
with two designated classes of maps: the fibrations and the weak equivalences, satisfying
the following axioms:

(i) Fibrations are closed under composition.

(ii) Pullbacks of fibrations exist and are fibrations again.

(iii) Pullbacks of acyclic fibrations are acyclic fibrations.

(iv) Weak equivalences satisfy 2-out-of-3.

(v) Isomorphisms are acyclic fibrations.

(vi) For every object X there is a path object PX.

(vii) C has a terminal object 1 and every map X → 1 is a fibration.

It is clear that every path category is a fibration category. The converse does not
hold. We will see a counterexample in Example 2.11. Both definitions are related to the
definition of a model category, as introduced by Quillen in [10], in which there are three
designated classes of maps: fibrations, weak equivalences and cofibrations. Given a model
category, the full subcategory of fibrant objects, which are the objects whose unique
map to the terminal object is a fibration, yields a fibration category. If moreover every
object in the model category is cofibrant, this subcategory is a path category. This gives
already many examples of path categories, such as the category of topological spaces
with Hurewicz fibrations and homotopy equivalences. In this path category, the path
objects are exactly as one expects: given a topological space X, the space of continuous
functions from the interval I to X endowed with the compact open topology is a path
object on X. Another example of a path category arising from a model category is the
category of Kan complexes, which are the fibrant objects the category of simplicial sets
with the Kan-Quillen model structure.

An example of a path category which does not necessarily arises as the subcategory of
a model category, but which will be relevant in this thesis, is the syntactic category for a
certain version of type theory. For intuitionistic type theory with function extensionality
this is proven by Avigad in [22]. We refer to [23] for a detailed exposition of function
extensionality. For the version of type theory we are mostly interested in, which is
objective type theory, it is shown by Van den Berg and Den Besten in [8] that its
syntactic category is a path category.
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Without proof we state a few important properties of path categories. We remark that
all lemmas in this section also hold true in fibration categories.

Lemma 2.4. Every morphism f : X → Y in a path category factorizes as f = pfwf ,
where pf is a fibration and wf is a section of an acyclic fibration.

Proof. Proposition 2.3 in [9].

It follows directly that every weak equivalence factorizes as a section of an acyclic
fibration followed by an acyclic fibration.

Given a path category C and an object X in C, the slice category C/X does not have
to carry a path category structure. However, if we take the full subcategory (C/X)f,
consisting of the fibrations with codomain X, we obtain a path category. The weak
equivalences and the fibrations are defined as the ones reflected by the forgetful functor
U : (C/X)f → C.

For any morphism f : X → Y there is an induced functor f∗ : (C/Y )f → (C/X)f, because
pullbacks along fibrations exist. We have the following lemma.

Lemma 2.5. Let f : X → Y a morphism in a path category C. The functor f∗ : (C/Y )f →
(C/X)f preserves fibrations, weak equivalences, pullbacks along fibrations and the terminal
object.

Proof. Lemma 4.1 in [21].

We can use this to prove the following lemma:

Lemma 2.6. Let f : X → Y a fibration in a path category and let w : Z → Y a weak
equivalence. The pullback of w along f is a weak equivalence.

Proof. Lemma 4.2 in [21].

All end this section with the so called cube lemma for path categories.

Lemma 2.7. Let C a path category and let

B A C

B′ A′ C ′

p

vB vA

f

vC

p′ f ′

a pair of commutative diagrams, with p and p′ fibrations and vA, vB and vC weak equiva-
lences. Then the induced map

B ×A C → B′ ×′A C ′

is a weak equivalence.

Proof. Dualizing Proposition 2.2.12 in [18].
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2.2 Homotopy and transport

In this section we will discuss notions of homotopy and transport in path categories.
Transport is an important concept in type theory. Whereas its type theoretic definition
is rather ad hoc and depends heavily on syntax, we can introduce it in the language of
path categories in a more conceptual and natural way. Without further ado, we define
homotopy in path categories.

Definition 2.8. Let f, g : X → Y parallel morphisms in a path category C. Then f
and g are homotopic, denoted by f ' g, if there is a morphism H : X → PY such that
sH = f and tH = g. The map H is called the homotopy.

Remark 2.9. It is a matter of computation to show that homotopy is both an equivalence
relation and a congruence relation. Being a congruence relation states that for composable
f and k and l and g we have that f ' g and k ' l implies kf ' lg. Moreover, homotopy
is independent of the choice of path object. In particular this means that we can make
sense of Ho C, the homotopy category of C. The objects of Ho C are the same as the
objects of C, and the morphisms are equivalence classes of morphisms in C identified up
to homotopy.

The morphisms in C which become isomorphisms in Ho C are called homotopy equiv-
alences. In other words, a map f : X → Y is a homotopy equivalence if there is some
g : Y → X such that fg ' idY and gf ' idX . We have the following characterization of
the homotopy equivalences in C.

Theorem 2.10. Weak equivalences and homotopy equivalences coincide in a path category
C.

Proof. Theorem 2.16 in [9].

Let us now give an example of a fibration category which is not a path category:

Example 2.11. Consider the model structure on topological spaces with fibrations being
the Serre fibrations and weak equivalences the weak homotopy equivalences. Every object
in this category is fibrant and hence it forms a fibration category. However, not every
weak homotopy equivalence is a homotopy equivalence. An example of this can be found
in Exercise 10 in Section 4.1 in Hatcher [24].

Before we introduce transport we need the notion of fibrewise homotopy.

Definition 2.12. Let p : Y → I a fibration in a path category C. We write PIY for the
path object of p : Y → I in (C/I)f, and call this object the fibred path object of Y over I.

In particular the fibred path object of a fibration p : Y → I is a factorization of the
map 〈id, id〉 : Y → Y ×I Y .

Definition 2.13. Let f, g : X → Y parallel morphisms in a path category C, and
let p : Y → I a fibration such that pf = pg. Then f and g are fibrewise homotopic
over I, denoted by f 'I g, if there is a fibrewise homotopy H : X → PIY such that
〈s, t〉H = 〈f, g〉 as maps X → Y ×I Y .
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Remark 2.14. We observe a few important facts. Ordinary homotopy in a path category
is fibrewise homotopy with respect to the unique fibration to the terminal object. If the
map fp as in Definition 2.13 is a fibration, then fibrewise homotopy over p is the same
as ordinary homotopy in (C/I)f.

Lemma 2.15. Let f, g : X → Y parallel morphisms in a path category C, and let
p : Y → I an acyclic fibration such that pf = pg. Then f and g are fibrewise homotopic
over I.

Proof. Let Y ×I Y the product of p : Y → I in (C/I)f. By 2-out-of-3 the diagonal
〈id, id〉 : Y → Y ×I Y is a weak equivalence. It follows that 〈s, t〉 : PIY → Y ×I Y ,
where PIY is the fibred path object over I, is an acyclic fibration. Let u its section. Now
u ◦ 〈f, g〉 : X → PIY is the fibrewise homotopy between f and g.

Fibrewise homotopy lacks the congruence properties mentioned in Remark 2.9. However,
the following lemmas will give some machinery which will make it easier to identify
fibrewise homotopic maps.

Lemma 2.16. Let f, g : X → Y to maps and p : Y → I a fibration such that f 'I g.
Let u : Z → X any map. Then fu 'I gu.

Proof. Let H : X → PIY a fibrewise homotopy between f and g. It is clear that
Hu : Z → PIY is a fibrewise homotopy between fu and gu.

Lemma 2.17. Let
A X

B Y

q

a

p

b

a commutative diagram with q and p fibrations, and let f, g : Z → A two maps which are
fibrewise homotopic over B. Then af 'Y ag.

Proof. Corollary 2.12 in [16].

Lemma 2.18. Let
B ×Y X X

B Y

π0

π1

p

b

a pullback square with p a fibration. To show that two maps f, g : Z → B ×Y X are
fibrewise homotopic over B, it suffices to show that π0f = π0g and π1f 'Y π1g.

Proof. Remarks 2.1.9 and 2.2.6 in [25].

Lemma 2.19. Let f, g : X → Y two maps and p : Y → I a fibration. Suppose w : Z → X
is weak equivalence such that fw 'I gw. Then f 'I g.
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Proof. Lemma A.5 in [7].

Let us now give a definition of a transport structure on a fibration:

Definition 2.20. Let f : X → Y a fibration in a path category C. A transport structure
on f is a morphism Γ : X ×Y PY → X, where X ×Y PY is the pullback

X ×Y PY PY

X Y

π1

π0 s

f

such that fΓ = tπ1 and Γ〈1X , rf〉 'Y 1X .

The idea of transport is the following. For a path α : y → y′ in Y and a point x in X
such that f(x) = y, we can transport x along the path α to obtain x′ such that f(x′) = y′.
Moreover, the path connecting x and x′ should lie entirely in the fibre over y if α is the
constant path ry. The following theorem ensures the existence of transport.

Theorem 2.21. Let f : X → Y a fibration in a path category C. Then f carries a
transport structure which is unique up to fibrewise homotopy over Y .

Proof. Theorem 2.26 in [9].

As mentioned in the introduction, we do not have a weak factorization system in a
path category. However, we do have the following theorem on liftings in certain diagrams.

Theorem 2.22. Let C a path category and let

A X

B Y

a

w f

b

a commutative diagram with w a weak equivalence and f a fibration. Then there exists a
morphism l : B → X such that lw 'Y a and fl = b. The map l is unique up to fibrewise
homotopy over Y .

Proof. Theorem 2.38 in [9].

An important ingredient in the proof of Theorem 2.22 is the following proposition.

Proposition 2.23. Let C a path category and let

X

B Y

f

b

l

a triangle commuting up to homotopy, and let f be a fibration. Then there is a map l′

homotopic to l such that fl′ = b.
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Proof. Proposition 2.31 in [9].

We can use this proposition to prove the following lemma

Lemma 2.24. Let C a path category. Suppose that (p0, p1) : X → Y × Y is a fibration
whose components are both acyclic fibrations. then X is a path object on Y if and only if
p0 ' p1.

Proof. It is clear that X being a path object on Y implies that p0 and p1 are homotopic.
Let us now prove the other implication. Because p0 is an acyclic fibration it has a section
u : Y → X. Consider the following diagram:

X

Y Y × Y.

(p0,p1)

∆

u

It commutes up to homotopy since p0 and p1 are homotopic and hence p0u and p1u are.
By Proposition 2.23 we obtain a common section of p0 and p1 and conclude that X is a
path object on Y .

We end this section with the following characterization of acyclic fibrations in a path
category.

Lemma 2.25. Let f : X → Y a fibration in a path category C. Then f is an acyclic
fibration iff there is a section s of f such that sf 'Y id.

Proof. Proposition 2.33 in [9].

2.3 Diagrams in path categories

In this section we will describe a class of indexing categories I for which we can endow (a
certain subcategory of) the functor category [I, C] with a path category structure if C is a
path category. These results have been worked out for type theoretic fibration categories,
which are very similar to path categories, in [26]. The proofs for path categories are
nearly identical, and are worked out in [27]. We will summarize the results.

Definition 2.26. We call a category I an inverse category if the relation “y receives a
non-identity arrow from x” is well founded. We write y ≺ x for this relation. The rank
ρ(x) of an object x in I is defined as the supremum

sup
y≺x

(ρ(y) + 1).

We define the rank of the category I as

sup
x∈I

(ρ(x) + 1).
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Given an object x in an inverse diagram, we write x � I for the subcategory of the
coslice category x/I in which we exclude the identity.

Definition 2.27. Let I an inverse category and C any category. Suppose A is a diagram
defined on the subcategory {y : y ≺ x}. We write MxA for the limit, if it exists, of the
diagram of x � I → C. We call MxA the matching object of A at x.

If for some inverse category I a diagram A has been defined on the subcategory
{y : y ≺ x} and the matching object MxA exists, it suffices to define Ax and a map
Ax →MxA in order to extend A to {y : y � x}.

Suppose a natural transformation f : A |{y:y≺x}→ B |{y:y≺x} is defined on the full
subcategory {y : y ≺ x}, and A and B both has matching objects at x. By the universal
property there is an induced map lim f : MxA→MxB.

Definition 2.28. Let I an inverse diagram and C a path category. We call a morphism
f : A → B between two diagrams of I in C a (Reedy) fibration if A and B have all
matching objects and the map Ax →MxA×MxB Bx as in the following diagram:

Ax

MxA×MxB Bx Bx

MxA MxB

is a fibration.

For every diagram A : I → C there is a unique map to the terminal diagram in C, which
is the terminal object in C in every component. This map is a fibration, or A is fibrant,
if all matching objects exists and for every x in I the map Ax →MxA is a fibration. We
write [C, I]f for the subcategory consisting of all the Reedy fibrant diagrams of I in C.

Theorem 2.29. Let I a small inverse diagram and C a path category. The category
[C, I]f with as fibrations the Reedy fibrations and weak equivalences the pointwise weak
equivalences is a path category.

Proof. Combine Theorem 6 and Lemma 7 in [27].

Remark 2.30. A property of maps between Reedy fibrant diagrams is the following:
if f : A→ B is a weak equivalence respectively fibration then for any object x in I the
induced map lim f : MxA→MxB is a weak equivalence respectively fibration.

One can define an additional class of diagrams in which all morphisms are weak
equivalences.

Definition 2.31. Let I any category and C a path category. We call a diagram A of I
in C homotopical if for every map α : x→ y in I the map Aα is weak equivalence.
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Proposition 2.32. Let I a small inverse diagram and C a path category. The category
[C, I]f,h of homotopical fibrant diagrams in C is a path category.

Proof. Combine Lemma 9 in [27] and Theorem 2.29.

Example 2.33. In the next section we will describe a fibration category of path categories.
Given a path category C its path object PC will be the category of fibrant homotopical
diagrams of the category

•

• •

in C. Explicitly, these are fibrations X01 → X0 × X1 such that both components are
weak equivalences (and hence acyclic fibrations).

2.4 The fibration category of path categories

This section is inspired by the work of Kapulkin and Szumilo in [15]. In this paper they
compare two frameworks which are similar to path categories: fibration categories and
tribes. Tribes were introduced by Joyal in [28]. A tribe is a categorical structure which
is a bit stronger than that of a path category, in the sense that every tribe is a path
category but not vice versa.

In the paper they compare the frameworks by looking at their homotopy theories.
In particular they endow the category of fibration categories and structure preserving
functors between them with a fibration category structure, and also endow (a small
modification of) the category of tribes with a fibration category structure. In this section
we will introduce a category Pth of path categories and functors preserving the relevant
structure, and describe a fibration category structure in a similar way as done in [15].
For full proofs we refer to [27]. We will also briefly mention how this structure relates to
the fibration category of fibration categories. We first give the definition of the “structure
preserving functors” between path categories:

Definition 2.34. Let F : C → D a functor between path categories. We call F exact
if it preserves fibrations, weak equivalences, the terminal object and pullbacks along
fibrations.

The notion of an exact functor of fibration categories is identical to that of path
categories. It follows from the definition that in both cases exact functors preserve the
homotopy relation.

Example 2.35. In Lemma 2.5 we saw that every morphism f : X → Y in a path
category induces an exact functor f∗ : (C/Y )f → (C/X)f. It is also clear that every
functor from a path category to the terminal category is exact. Another example is the
source and target functor PC → C × C, where PC is as in Example 2.33. The functor
maps a fibration X01 → X0 ×X1 to the object (X0, X1) in C × C.
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The fibrations between path categories are defined as follows:

Definition 2.36. Let F : C → D an exact functor of path categories. We call F a
fibration of path categories if it satisfies the following properties:

(i) It is an isofibration: for every X in C and an isomorphism f ′ : FX → Y in D, there
is an isomorphism f : X → Y ′ in C such that Ff = f ′.

(ii) It has the lifting property for factorizations: Given a morphism f : X → Y in C,
and a factorization Ff = p′i′, with p a fibration and i a weak equivalence, there is
a factorization f = pi such that Fp = p′ and Fi = i′.

(iii) It has the lifting property for sections of acyclic fibrations: if f : X → Y is an
acyclic fibration in C, and s′ is a section Ff , then there is a section s of f such that
Fs = s′.

It follows easily from the definition that fibrations of path categories can lift acyclic
fibrations as in the following lemma:

Lemma 2.37. Let F : C → D a fibration of path categories. Let X an object in C and
f ′ : Y ′ → FX an acyclic fibration in D. Then there is some f : Y → X such that
Ff = f ′ and in particular FY = Y ′.

Proof. Since f ′ is an acyclic fibration it has a section s′ : FX → Y ′. Now the composition
f ′s′ is a factorization of the identity on FX. By the lifting property for factorizations
we obtain lifts s : X → Y and f : Y → X such that fs = idX , the map s is a weak
equivalence, and f is a fibration. By 2-out-of-3 it follows that f is an acyclic fibration.

The notion of a fibration of fibration categories is a little bit different than that of
a fibration of path categories. A fibration of fibration categories is an isofibration and
has the lifting property for factorizations, but it does not have the lifting property for
sections of acyclic fibrations. However, it does satisfy an additional axiom, which is called
the lifting property for pseudofactorizations. We show that a fibration of path categories
also satisfies this property as a consequence of its axioms.

Lemma 2.38. Let F : C → D a fibration of path categories. Then F has the lifting
property for pseudofactorizations, which says that given a morphism f : X → Y in C
and a diagram

Z ′ FX

W ′ FY

i′

s′ F (f)

u′

in D, where i′ is an acyclic fibration, s′ a weak equivalence and u′ is a fibration, there
exists a diagram

Z X

W Y

i

s f

u
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in C, with i an acyclic fibration, s a weak equivalence and u a fibration, such that Fi′ = i
and Fs′ = s and Fu′ = u.

Proof. By Lemma 2.37 we lift the acyclic fibration i′ : X ′ → FX to an acyclic fibration
i : Z → X. We can now apply lifting for factorizations to u′ and s′ to obtain lifting for
pseudofactorizations.

We will now define weak equivalences of path categories.

Definition 2.39. Let F : C → D an exact functor of path categories. We call F a weak
equivalence of path categories if the induced functor

Ho(F ) : Ho(C)→ Ho(D)

is an equivalence of categories.

The notion of a weak equivalence of fibration categories is identical to that of a weak
equivalence of path categories. Recall that a functor is an equivalence of categories if
and only if it is full, faithful and essentially surjective.

Remark 2.40. The functor Ho(F ) being an equivalence is equivalent to saying that F
is homotopy full, homotopy faithful and homotopy essentially surjective. This means the
following:

Homotopy full For every f : F (X)→ F (Y ) there is a map f ′ : X → Y such that
F (f ′) ' f .

Homotopy faithful For every f, g : X → Y we have that F (f) ' F (g) if and only
if f ' g.

Homotopy essentially surjective For every object X in D there is some X ′ in
C and a weak equivalence w : F (X ′)→ X.

We have the following characterization of weak equivalences due to Cisinski:

Theorem 2.41. Let F : C → D an exact functor of path categories. Then F is a weak
equivalence if and only if it reflects weak equivalences, and for every f : Y → FX in D, we
can find a map u : X ′ → X in C, and weak equivalences v : Y ′ → Y and w : Y ′ → FX ′,
such that the following diagram commutes:

Y ′ FX ′

Y FX.

w

v F (u)

f

This last property is also called the approximation property.

Proof. Theorem 3.12 in [29].
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The following lemma, due to Szumilo in [30] for cofibration categories, gives a charac-
terization of acyclic fibrations between path categories.

Lemma 2.42. An exact functor F : C → D between path categories is an acyclic fibration
iff the functor is a fibration, reflects weak equivalences and moreover it satisfies the
following property: given a fibration f : Y → FX in D, there is a fibration f ′ : Y ′ → X
in C such that Ff ′ = f .

Proof. Lemma 14 in [27].

Theorem 2.43. The category Pth of path categories and exact functors forms a fibration
category, with the fibrations and weak equivalences as defined above.

Proof. Theorem 15 in [27].

The same holds true for category Fib of fibration categories and exact functors, with
fibrations and weak equivalences as described throughout the section. As we will be
studying exact functors in Fib with domain Pth, it is useful to mention the structure of
pullbacks along fibrations in Pth. If F : C → D is an exact functor of path categories,
and G : E → D is a fibration of path categories, then the underlying category of the
pullback C ×D E is just the ordinary pullback of F and G as functors in Cat. The
fibrations and the weak equivalences in C ×D E are defined pointwise.

Remark 2.44. As every path category is a fibration category, and every exact functor of
path categories is an exact functor of fibration categories, there is an inclusion Pth→ Fib.
It is immediate that this inclusion is an exact functor fibration categories. The functor
moreover reflects weak equivalences.

2.5 Exact functors and slice categories

In this section we will show that both fibrations and weak equivalences are stable under
slicing. This will be useful for understanding the way fibrewise homotopies behave under
these functors.

Let F : C → D an exact functor and let X some object in C. There is an induced
functor F/X : (C/X)f → (D/F (X))f which takes an object p : Y → X in (C/X)f to
F (p) : F (Y )→ F (X), which indeed is an object in (D/F (X))f as F preserves fibrations.

Lemma 2.45. Let F : C → D an exact functor of path categories. For any object X in
C, the functor F/X : (C/X)f → (D/F (X))f is exact.

Proof. Immediate.

Lemma 2.46. Let F : C → D a fibration of path categories. For any object X in C, the
functor F/X : (C/X)f → (D/F (X))f is a fibration.
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Proof. We will prove that F/X is an isofibration if F is, and omit the other proofs.
Consider an isomorphism i′ over F (X), which is a diagram of the following form:

F (Y ) Z ′

F (X).

i′

F (y) z′

Because F is an isofibration we lift i′ to i : Y → Z. The diagram

Y Z

X

y

i

yi−1

gives a lift of i as a morphism over F (X).

Lemma 2.47. Let F : C → D an acyclic fibration of path categories. For any object X
in C, the functor F/X : (C/X)f → (D/F (X))f is an acyclic fibration.

Proof. Because F/X is a fibration by Lemma 2.45, it remains to show that weak equiv-
alences are reflected and every fibration can be lifted as in Lemma 2.42. Reflection of
weak equivalences is immediate because F is an acyclic fibration. Now let f : Z → F (Y )
a fibration over F (X) as in

Z F (Y )

F (X).

z

f

F (y)

It is clear that lifting f to some f ′ : Z → Y also lifts over X because yf ′ is a fibration
such that F (yf ′) = F (y)F (f ′) = z.

Corollary 2.48. Let F : C → D a weak equivalence of path categories. For any object X
in C, the functor F/X : (C/X)f → (D/F (X))f is a weak equivalence.

Proof. First we remark that Lemma 2.4 also holds true in fibration categories. Let
F : C → D a weak equivalence. We factorize F as PW , where P an acyclic fibration and
W a section of an acyclic fibration. The functor P/W (X) is an acyclic fibration by 2.47.
The functor W/X is a weak equivalence because it is the section of some acyclic fibration
G which induces an acyclic fibration G/W (X) such that G/W (X)W/X is the identity and
hence by 2-out-of-3 the functor W/X is a weak equivalence and hence F/X is because
F/X = P/W (X)W/X .

We will see arguments like this many times in this thesis; to prove certain properties
for weak equivalences of path categories it is sufficient to show it for acyclic fibrations.
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This is related to something which is called Brown’s Lemma, although it is a bit different.
Brown’s Lemma states the following. Suppose F : C → D is a functor between a fibration
category C and a category with weak equivalences D, i.e. a category with a class of weak
equivalences satisfying 2-out-of-3 and containing all isomorphisms. Then to show that F
preserves weak equivalences, it is enough to show that F maps acyclic fibrations to weak
equivalences.

Lemma 2.49. Let F : C → D a weak equivalence. Then F is also fibrewise homotopy
faithful in the following sense. If f, g : X → Y are any two maps in C, and p : Y → I a
fibration in C such that pf = pg and F (f) 'F (i) F (g) in D, then f 'I g.

Proof. We have a fibrewise homotopy H : F (X)→ F (PIY ) such that

F (PIY )

F (X) F (Y ×I Y )

F 〈s,t〉H

〈F (f),F (g)〉

commutes. By homotopy fullness there is some H ′ such that F (H ′) ' H. Hence the
diagram

PIY

X Y ×I Y

〈s,t〉H′

〈f,g〉

commutes up to homotopy by homotopy faithfulness. We can apply Lemma 2.23 to
obtain a map H̃ which makes the triangle commute. This gives us the desired fibrewise
homotopy.

2.6 2-fibrations

In this section we introduce the notion of a 2-fibration, which is a generalization of
the notion of an isofibration between categories to the setting of path categories. We
will show that every fibration is in fact a 2-fibration. The main result of this section is
Corollary 2.55, in which we show that acyclic fibrations are full and surjective on objects.
The motivation for the precise definition of a 2-fibration will become clear in Section 3.7.

Definition 2.50. Let F : C → D an exact functor of path categories. We call F a
2-fibration if the following two axioms are satisfied:

(i) For every weak equivalence w : X → FY in D there is a weak equivalence w′ :
X ′ → Y such that Fw′ = w.

(ii) For every homotopy H : F (X) → PF (Y ) between two maps F (f) and g in D,
there is a homotopy H ′ : X → PY for some path object PY of Y , such that
F (PY ) = P (FY ) and FH ′ 'F (Y )×F (Y ) H.

21



Lemma 2.51. Suppose an exact functor F : C → D satisfies property (ii) of Definition
2.50. Then property (i) is equivalent to saying that every weak equivalence FX → Y can
be lifted to a weak equivalence X → Y ′.

Proof. We prove that (i) and (ii) imply the the alternative version of (i). Let w : FX → Y

a weak equivalence. We lift w−1 : Y → FX to a map w̃−1 : Y ′ → X in C. Let w̃ its
inverse in Ho(C). Clearly F (w̃) ' w, and we can lift the homotopy between them to
obtain w′ such that F (w′) = w. The other implication has a similar proof.

Lemma 2.52. Let F : C → D a fibration. For any object A the functor F/A satisfies the
alternative version of property (i) as in Lemma 2.51.

Proof. Consider a weak equivalence

F (X) Y

F (A)
F (x)

w

y

in (D/F (A))f. The lifting property for factorizations of F applied to F (x) = yw now
yields the weak equivalence in (C/A)f.

By taking A = 1 we have that every fibration satisfies this alternative property as in
Lemma 2.51. In fact, every fibration is a 2-fibration.

Theorem 2.53. Every fibration is a 2-fibration.

Proof. Let F : C → D a fibration. We show that property (ii) of Definition 2.50 is
satisfied, as this is enough to show F is a 2-fibration by Lemma 2.51 and Lemma 2.52.
Let

FPY

FX FY × FY

F (s,t)

(Ff,g)

H

a homotopy in D. We have the pullback

X ×Y PY PY

X Y

π2

π1 s

f

in C, which by F is mapped to a pullback F (X ×Y PY ) in D. We have a map 〈id,H〉 :
FX → F (X ×Y PY ), which is a section of the acyclic fibration F (π1). By the lifting
property for sections of acyclic fibrations, we obtain a map l : X → X ×Y PY such that
F (l) = 〈id,H〉. We now claim that π2l : X → PY is the homotopy we are looking for.
First note that

F (π2l) = F (π2)〈id,H〉 = H.
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Secondly note that
sπ2l = fπ1l = f.

Lastly note that
F (tπ2l) = F (t)H = g

and hence F is a 2-fibration.

Remark 2.54. The proof of Theorem 2.53 shows that fibrations satisfy a homotopy
lifting property which is even stronger than axiom (ii) in the definition of a 2-fibration:
given a homotopy H : F (X) → PF (Y ) between maps F (f) and g in D, there is a
path object PY and a homotopy H ′ : X → PY between f and some g′ such that
F (PY ) = PF (Y ) and F (H ′) = H and F (g′) = g.

Corollary 2.55. Let F : C → D an acyclic fibration between path categories. Then F is
surjective on objects and full.

Proof. Surjective on objects follows by applying Lemma 2.42 to the unique fibrations
to the terminal object. Now let f : F (X)→ F (Y ) in D. We use homotopy fullness to
obtain f̃ : X → Y such that F (f̃) ' f . Now apply the second property of 2-fibrations to
obtain f ′ : X → Y such that F (f ′) = f .

Moreover, acyclic fibrations have some extra lifting properties.

Lemma 2.56. Let F : C → D an acyclic fibration. Let p : X → Y a fibration in C and
f : Z → Y any map. Suppose there is a map l : F (Z)→ F (Y ) such that F (p)l = F (f).
Then there is a map l′ : Z → X such that pl = f and F (l′) = l.

Proof. Consider the pullback

Z ×Y X X

Z Y

π1

π2

p

f

which is preserved by the map F . There is an induced map 〈id, l〉 : F (Z)→ F (Z ×Y X).
By surjectivity of F/Z there is a map u : Z → Z×Y X which is mapped to 〈id, l〉. Because
we considered the functor to be over Z we have π1u = id. It is also clear that π2u is
mapped to l by functoriality and exactness of F . Now at last we note that

pπ2u = fπ1u = f

and hence π2u is indeed as stated in the lemma.

In particular, acyclic fibrations also have a lifting property for sections of fibrations.

Corollary 2.57. Let F : C → D an acyclic fibration. Let p : X → Y a fibration in C and
let s a section of the fibration F (p). Then there is a section s′ of p such that Fs′ = s.
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Proof. Apply Lemma 2.56 to

F (X)

F (Y ) F (Y ).

F (p)
s

id

The diagonal fillers in a commutative diagram with a weak equivalence on the left and
a fibration on the right can also be lifted by acyclic fibrations.

Corollary 2.58. Let F : C → D an acyclic fibration. Let

A X

B Y

w

f

p

g

a commuting diagram in C with w weak equivalence and p a fibration. Let l : F (B)→ F (X)
a lift such that the lower right triangle commutes and the upper left commutes up to
fibrewise homotopy. Then there is a map l′ : B → X such that it does the same for the
diagram in C.

Proof. Apply Lemma 2.56 to the lift in question. The result follows by applying Lemma
2.49.
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3 Frames and enrichments

This chapter is devoted to the study of higher structures of path categories. Most of
these concepts will play a role in the proof of homotopy canonicity. The main definition
of this chapter is that of a frame in a path category, which is a semisimplicial object
in C with some extra structure. Frames capture the higher dimensional properties of
the objects in a path category in a similar way as the singular complex captures the
structure of a topological space.

3.1 Semisimplicial sets and frames

We start by reviewing the notion of a semisimplicial set or object. We refer to [14], [31]
or [32] for a more thorough exposition. We will also rely on the results presented in [33].
We assume the reader to be familiar with simplicial sets and the Kan-Quillen model
structure.

Definition 3.1. The category ∆+ is the category of non-empty finite ordinals of the
form [n] = {0, . . . , n}, and injective monotone functions.

Note that there is a canonical inclusion of ∆+ into ∆, the category of finite ordinals
and all monotone functions.

The presheaf category on ∆+ is called the category of semisimplicial sets and is
denoted by ssSet. We write ∆+[n] for the representable presheaf Hom∆+(−, [n]). A
semisimplicial set K is called finite if the disjoint union of all simplices is finite. We write
ssSetFin for the category of finite semisimplicial sets. For an arbitrary category C, we
call the functor category [∆op

+ , C] the category of semisimplicial objects in C. Given such
a semisimplicial object X• : ∆op

+ → C, the face maps satisfy the semisimplicial identities

didj = dj−1di if i < j.

It is clear that the category ∆+ is an inverse category and hence we can apply Proposition
2.32 to get the following definition, due to Szumi lo in [34]:

Definition 3.2. Let C a path category. We write Fr C for the homotopical fibrant
diagrams of ∆op

+ in C. We call this category the category of frames in C.

Lemma 3.3. Let X• a frame in a path category C. All parallel face maps in X• are
homotopic.

Proof. Let n ≥ 2 and let di and di+1 be face maps from Xn to Xn−1. By the semisimplicial
identities we have that

didi+1 = didi
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and hence di ' di+1 because di : Xn−1 → Xn−2 is a weak equivalence. It remains to show
the lemma holds for d0, d1 : X1 → X0. However, since d0d2 = d1d0 and d0 ' d2 as maps
X2 → X1, it follows immediately that d0 and d1 as maps X1 → X0 are homotopic.

There is a functor ev0 : Fr C → C mapping a frame X• to X0. We will show in Section
3.4 that this functor is an acyclic fibration of path categories.

As in the category of simplicial sets, there are a few important examples of semisimplicial
sets:

Definition 3.4. Let n a natural number. We define the boundary ∂∆+[n] as the
semisimplicial subset of ∆+[n] obtained by removing the unique n-simplex of ∆+[n]. So
we have

(∂∆+[n])m =

{
(∆+[n])m if m 6= n

∅ if m = n.

Now let 0 ≤ i ≤ n. We define the k-horn Λk+[n] as the semisimplicial subset of ∂∆+[n]
obtained by omitting the k-th face, or as the semisimplicial subset of ∆+[n] consisting of
all the faces of the unique n-simplex except the i-th one. So we have

(∆k
+[n])m =


(∆+[n])m if m 6∈ {n− 1, n}
(∂∆+[n] \∆+[n− 1])m if m = n− 1

∅ if m = n

where ∆+[n− 1] denotes the k-th face.

Semisimplicial sets form a symmetric monoidal category. The tensor product of the
monoidal structure is given by the geometric product ⊗. The geometric product was
originally introduced in [32] to describe the non-degenerate simplicial of the product of
two simplicial sets. We will give a brief summary of a more categorical approach of the
geometric product, which is given in [31]. Write Pos+ for the category of posets and
injective functions. There is a functor N+ : Pos→ ssSet which maps a poset P to the
semisimplicial set N+(P ) whose n-simplices are elements of the set HomPos+([n], P ). For
every [n] we obtain a functor ∆+[n]⊗− : ssSet→ ssSet as the left Kan extension of
the functor N+([n]×−) : ∆+ → ssSet. To obtain −⊗X for an arbitrary semisimplicial
set K we take the left Kan extension of the functor which maps [n] to ∆+[n]⊗K. The
unit of the monoidal structure is given by the representable semisimplicial set ∆+[0].

Given a semisimplicial set K the functor −⊗K has a right adjoint [K,−] which is the
internal hom of the monoidal structure. In particular this means that given a triple of
semisimplicial sets K, L and M there is an isomorphism

HomssSet(K, [L,M ])→ HomssSet(K ⊗ L,M),

which is natural in all three variables. It follows that for two semisimplicial sets L
and M the 0-simplices of the internal hom [L,M ] are given by elements of the set
HomssSet(L,M).
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3.2 A path category of semisimplicial sets

In this section we will describe a path category of semisimplicial sets, based on the works
of [31] and [33]. We will then compare the structure with the path category structure
on simplicial sets inherited from the Quillen model structure, by means of the canonical
functors between simplicial sets and semisimplicial sets induced by the inclusion ∆+ → ∆.

Fibrations between semisimplicial sets will be the semisimplicial analogues of Kan
fibrations.

Definition 3.5. Let f : K → L a morphism of semisimplicial sets. We call f a
semisimplicial Kan fibration if every diagram of the form

Λk+[n] K

∆+[n] L

α

f

β

has a lift ∆+[n]→ K such that both triangles commute strictly. We call f a semisimplicial
trivial Kan fibration if every diagram of the form

∂∆+[n] K

∆+[n] L

α

f

β

has a lift ∆+[n]→ K such that both triangles commute strictly.

The category ssSet has a terminal object 1 which has precisely one n-simplex for every
n. We call a semisimplicial set K a semisimplicial Kan complex or fibrant semisimplicial
set if the unique map K → 1 is a Kan fibration. In particular this means that every horn
inclusion Λk+[n]→ K can be lifted to an n-simplex ∆+[n]→ K.

We can define homotopies between morphisms of semisimplicial sets using the geometric
product:

Definition 3.6. Two morphisms ω, γ : K → L of semisimplicial sets are semisimplicially
homotopic or just homotopic if there is a homotopy H : K ⊗∆+[1]→ L such that the
inclusions of K in K ⊗∆+[1] composed with H yield ω and γ.

The weak equivalences between fibrant semisimplicial sets will now be the homotopy
equivalences with respect to the notion of homotopy defined above.

Definition 3.7. Let f : K → L a morphism of fibrant semisimplicial sets. We call f a
weak equivalence if there is a map g : L→ K such that fg and gf are semisimplicially
homotopic to the identities.

If one wants to extend the definition of a weak equivalence to general semisimplicial
sets one has to do a bit more work. This is worked out explicitly in Section 3.3.3 in [31].
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Lemma 3.8. Let f : K → L a fibration between fibrant semisimplicial sets. Then f is a
trivial fibration if and only if it is a weak equivalence.

Proof. Corollary 3.17 in [33].

Theorem 3.9. The category ssSetf of fibrant semisimplicial sets forms a fibration
category.

Proof. Theorem 3.18 in [33].

Lemma 3.10. The trivial fibrations fit into a weak factorization system (cofibrations,
trivial fibrations), where the cofibrations are the monomorphisms.

Proof. Section 3.2 in [31].

Lemma 3.11. The category ssSetf of fibrant semisimplicial sets forms a path category.

Proof. By Theorem 3.9 the category is a fibration category. By Corollary 3.22 in [33] the
weak equivalences satisfy 2-out-of-6. Because the unique map ∅ → K is a monomorphism
and hence a cofibration, all acyclic fibrations have sections by the weak factorization
system in Lemma 3.10.

By classical theory on presheaf categories the inclusion ∆+ → ∆ induces a forgetful
functor U : sSet→ ssSet with two adjoints L,R : ssSet→ sSet. The functors U and
R preserve the fibrant objects in both categories, and in particular the path category
structure, as in the following theorem.

Theorem 3.12. The functors U : sSetf → ssSetf and R : ssSetf → sSetf are weak
equivalences of path categories.

Proof. Theorem 3.73 in [33] proves that the functors are weak equivalences of fibration
categories. However, by Remark 2.44 they are also weak equivalences of path categories.

3.3 A pairing of semisimplicial sets and frames

In this section we will describe a pairing of semisimplicial sets and frames as introduced in
[14] by Schwede for cofibration categories. We will use this pairing in the next section to
show that the evaluation functor ev0 : Fr C → C is a weak equivalence of path categories.

First, we note that for any semisimplicial object X• in C we obtain a functor

C(−, X•) : C → ssSet

which maps an object Z to the semisimplicial set which in degree n is defined by C(Z,Xn).
Now fix some semisimplicial set K and some semisimplicial object X•. We obtain a
presheaf on C which maps an object Z in C to

HomssSet(K, C(Z,X•)).
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If the presheaf is representable, we write K ∩X• for its representable object. Alternatively
K ∩ X• can be defined as the limit of the following diagram:∫

K → ∆op
+ → C.

Recall that
∫
K is the category of elements, with objects pairs (n, x) such that x ∈ Kn.

A morphism (n, x)→ (m, y) is a morphism di : Kn → Km such that di(x) = m.

Lemma 3.13. The two definitions of K ∩ X• are equivalent.

Proof. Suppose that the functor HomssSet(K, C(−, X•)) is represented by K ∩ X•.
Consider the morphism η : K → C(K ∩ X•, X•) corresponding to the identity in
C(K ∩ X•,K ∩ X•). Given an n-simplex x we obtain some ηn(x) : K ∩ X• → Xn. Now
for a morphism di : (n, x)→ (m, y) in

∫
K we precisely have that ηm ◦ di = di ◦ ηn, this

makes that K ∩ X• is a cone on the correct diagram. If T is some other limiting cone,
then we obtain an element of HomssSet(K, C(T,X•)) which then precisely corresponds to
a unique element in HomC(T,K ∩ X•). The other implication has a similar proof.

Example 3.14. Let X• a semisimplicial object in C. We have the following important
examples:

(i) ∆+[n] ∩ X• = Xn,

(ii) ∂∆+[n] ∩ X• = MnX•.

Recall that MnX• is the matching object of the diagram X• : ∆op
+ → C at n. Note that

(ii) does not necessarily exist for arbitrary X•.

This means a semisimplicial object X• is fibrant if for every n the pairing ∂∆+[n] ∩ X•
exists and the map ∆+[n] ∩ X• → ∂∆+[n] ∩ X•, which is induced by the inclusion
∂∆+[n]→ ∆+[n], is a fibration.

Lemma 3.15. The pairing K ∩ X• exists for every fibrant X• and finite K. Moreover,
(acyclic) fibrations between two fibrant semisimplicial objects X• and Y • are mapped to
(acyclic) fibrations in C

Proof. Proposition 3.3 in [14].

By fixing a finite semisimplicial set K or fibrant X• we obtain two functors, one
contravariant and one covariant.

Lemma 3.16. For fibrant X• : ∆op
+ → C, the functor − ∩ X• : ssSet→ C maps colimits

to limits. For a finite semisimplicial set K the functor K ∩ − : [∆op
+ , C]f → C preserves

limits.

Proof. Proposition 3.4 in [14].
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Definition 3.17. An inclusion K ⊂ L of semisimplicial sets is called an elementary
expansion of dimension n if L is obtained from K by adding one n-simplex and one n− 1
simplex.

Example 3.18. Archetypical elementary expansions are the horn inclusions Λi
+[n]→

∆+[n]. In fact, every elementary expansion arises as the pushout of an horn inclusion as

Lemma 3.19. Let K → L an elementary expansion and X• some fibrant semisimplicial
object in C. The induced map L ∩ X• → K ∩ X• is an acyclic fibration.

Proof. Proposition 3.7 in [14].

Remark 3.20. It is relevant to note that for any frame X• we have the following pullback
square in C:

MnX• Xn−1

Λk+[n] ∩ X• Mn−1X•.

Because the diagram

∂∆+[n− 1] Λk+[n]

∆+[n− 1] ∂∆+[n]

is a pushout in ssSet.

3.4 The evaluation functor

In this section we will give a proof that the evaluation functor ev0 : Fr C → C, mapping a
frame X• to X0, is an acyclic fibration of path categories. The proof that ev0 is a weak
equivalence, which is Theorem 3.23, and its preliminary lemma which Lemma 3.22, are
due to Schwede and can be found in [14]. Let us start by introducing the semisimplicial
counterpart of a cone.

Definition 3.21. Let K be a semisimplicial set. We define CK to be the cone on K.
Its simplices are defined as

CK0 := K0 q {∗}
and

CKn := Kn q {σx | x ∈ Kn−1},
where the σx are formal elements. The face maps are such that the inclusion K ⊂ CK is
a morphism of semisimplicial objects. On the objects of the form σx in CKn, they are
defined as follows:

di(σx) =

{
σdi(x) i 6= n

x i = n

and d0(σx) = ∗ for x in K0.
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The following lemma is essential in showing that ev0 is a weak equivalence.

Lemma 3.22. Let C a path category and let ϕ : Z → ev(X•) a morphism with X• a
frame. We can define a homotopical semisimplicial object Y•, a morphism f• : Y• → X•
and a weak equivalence w : Y0 → Z such that ϕ ◦ w = f0.

Proof. By P (n) we denote the semisimplicial set with precisely one i simplex for every
i ≤ n. Write C(n) for the cone CP (n). Note that we have the following chain of
elementary expansions

{∗} → C(0)→ C(1)→ C(2)→ · · ·

Which means we the following chain of acyclic fibrations

· · · → C(2) ∩ X• → C(1) ∩ X• → C(0) ∩ X• → X0.

Define Y0 to be the following pullback

Y0 C(0) ∩ X•

Z X0,

and define Yn to be this pullback

Yn C(n) ∩ X•

Yn−1 C(n− 1) ∩ X•.

The map Yn → Yn−1 is a weak equivalence for every n, hence we obtain a homotopical
semisimplicial object Y•, with every face map in the same degree being the same. For
every n there is a unique morphism ∆+[n]→ P (n), identifying all i-simplices for i ≤ n.
We compose this map with the canonical inclusion P (n)→ C(n) and obtain the following
commutative diagram:

∆+[n− 1] P (n− 1) C(n− 1)

∆+[n] P (n) C(n),

where we can range over all different inclusions ∆+[n− 1]→ ∆[n]. Applying − ∩ X• to
the outer rectangle yields the commutative diagram

C(n) ∩ X• Xn

C(n− 1) ∩ X• Xn−1,
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where we again range over all different inclusions ∆+[n− 1]→ ∆+[n]. We can conclude
now by remarking that we obtain a morphism f• : Y• → X• by composing Yn → C(n)∩X•
with C(n) ∩X• → Xn. In degree zero this map is precisely given such that ϕ◦w = f0.

Theorem 3.23. The functor ev0 : Fr C → C is a weak equivalence.

Proof. First remark that ev0 reflects weak equivalences by repeatedly applying 2-out-of-3:
suppose that f• : Y• → X• is a morphism of frames such that f0 is a weak equivalence.
Now apply the following inductive argument: if fi is a weak equivalence, then fi+1 is one
because fidk = dkfi+1 and both face maps are weak equivalences.

We will now show the approximation property holds. Let ϕ : Z → ev0(X•) any
morphism. Apply the previous lemma to obtain a triangle

ev0(Y•)

Z ev0(X•).

w
ev0(f•)

ϕ

Note that Y• is not necessarily fibrant. We will fix this by factorizing f•. First, factorize
f0 as follows

Y0 Y ′0 X0,
v0 p0

with v0 a weak equivalence and p0 a fibration. Then define Y ′n as follows. First take the
pullback

P Xn

MnY
′
• MnX•.

By the universal property of the pullback we obtain a map Yn → P which we then
factorize as

Yn Y ′n P.
vn

The map pn now is the composition

Y ′n → P → Xn.

By induction it becomes clear that we have factorized f• : Y• → X• as

Y• Y ′• X•,
v• p

with Y ′• being fibrant, v• a weak equivalence and p• a fibration. By 2-out-of-3, and Y•
being homotopical, it follows that Y ′• is homotopical too. Thus we obtain the following
commutative square in C:

Y0 ev0(Y ′•)

Z ev0(X•),

w

v0

ev0(p•)

ϕ
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which shows that the approximation property holds, and hence ev0 is a weak equivalence.

Theorem 3.24. The functor ev0 : Fr C → C is a fibration.

Proof. We check the properties:

(i) ev0 is an isofibration: let i : X0 → Y an isomorphism. Suppose that we have
extended i up until level in−1 : Xn−1 → Yn−1. By the theory on inverse diagrams,
there is an induced isomorphism Mni• : MnX• →MnY•, where X• and Y• are only
defined up to level n− 1. Now set Yn := Xn and define the map Yn →MnY• to be
Mni• ◦ xn, where xn denotes the map Xn →MnX•. We define in to be the identity.
It is clear that this extends i• another level.

(ii) ev0 has the lifting property for factorizations: let f• : X• → Y• a morphism of
frames and let p0w0 a factorization of f0. Suppose we have lifted the factorization up
to degree n−1. Let MnZ•×MnY• Yn the obvious pullback, and factorize 〈limw•, fn〉
as a weak equivalence followed by a fibration. The object in the middle will be Zn.

(iii) ev0 has the lifting property for sections of acyclic fibrations: let f• : X• → Y• an
acyclic fibration, and let s0 a section of f0. The argument is by induction, and
in degree n obtained as follows. The map 〈xn, fn〉 : Xn → MnX• ×MnY• Yn is an
acyclic fibration and hence has a section u. Now define sn := u ◦ 〈lim s•, id〉 ◦ yn.
One can check that this constructs a section s• of f•.

3.5 The global sections functor

As we will see in Section 4.6 an important ingredient of the proof of canonicity in [11]
is the global sections functor. For any category C with a terminal object this functor
Γ : C → Set is defined for any object X as Γ(X) = HomC(1, X). In this section we will
be considering a version of the global sections functor which is valued in semisimplicial
sets. Given a frame X• in C, we define Γ(X•) to be the semisimplicial set for which the
n-simplices are given by

Γ(X•)n = HomC(1, Xn).

We will show that this functor is an exact functor of fibration categories. Let us first
show that it is valued in fibrant semisimplicial sets:

Lemma 3.25. Let C a path category and X• a frame in C. Then, the semisimplicial set
Γ(X•) is a semisimplicial Kan complex.

Proof. Consider a diagram

Λi+[n] Γ(X•)

∆+[n]

σ
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in ssSet. We want to find a lift σ̃ : ∆+[n]→ Γ(X•) making the triangle commute. The
horn σ in Γ(X•) consists of a collection of (n− 1)-simplices x0, . . . , xi−1, xi+1, . . . , xn in
Γ(X•) such that they agree on the appropriate boundaries. These (n− 1)-simplices are
morphisms xk : 1→ Xn−1. We see that we get a cone on the diagram∫

Λi+[n]→ ∆+ → C

and hence an induced map σ′ : 1→ Λi+[n] ∩X•. Write πk for the projection Λi+[n] ∩X• →
Xn−1 corresponding to dk. We have πkσ

′ = dk for every k ∈ {0, . . . , xi−1, xi+1, . . . xn}.
Now we note that because Λi+[n]→ ∆+[n] is an elementary expansion, the map induced
map Xn → Λi+[n] ∩ X• is an acyclic fibration. We now write mx for this morphism. The
morphism mx moreover satisfies πkmx = dk for every relevant k. Let s a section of mx.
We claim that s ◦ σ′ : 1→ Xn is a horn filling n-simplex. To do this, it suffices to show
that dksσ

′ = xk for relevant k. We get

dksσ
′ = πkmxsσ

′

= πkσ
′

= xk,

and conclude that Γ(X•) is fibrant.

Lemma 3.26. Let C a path category and f• : X• → Y• a fibration in Fr C. Then, the
morphism Γ(f•) : Γ(X•)→ Γ(Y•) is a semisimplicial Kan fibration.

Proof. Consider a diagram

Λk+[n] Γ(X•)

∆+[n] Γ(Y•)

α

Γ(f•)

β

in ssSet. This corresponds to a diagram

1 Λk+[n] ∩ X•

Yn Λk+[n] ∩ Y•

α

β Λk
+[n]∩ f•

in C. Write mx for the map Xn → Λk+[n] ∩ X•, similar for my. We are looking for a map
γ : 1→ Xn such that both

Xn

1 Λk+[n] ∩ X•

mx
γ

α

and

Xn

1 Yn

fn
γ

β
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commute. Consider the pullback

P Yn

Λk+[n] ∩ X• Λk+[n] ∩ Y•.

π2

π1

We have an induced map γ′ := 〈α, β〉 : 1→ P . We also have an induced map u : Xn → P .
Because the maps Xn → Λk+[n] ∩ X• and P → Λk+[n] ∩ X• both are acyclic fibrations,
the latter being a pullback of one, the map Xn → P is a weak equivalence. We will now
show that the map is also a fibration. Since we have a factorization

Yn →MnY• → Λk+[n] ∩ Y•

we can write the pullback as

P Yn

P ′ MnY•

Λk+[n] ∩ X• Λk+[n] ∩ Y•,

by which we can see that the map Xn → P factorizes in the following way:

Xn

P ′′ P Yn

MnX• P ′ MnY•

Λk+[n] ∩ X• Λk+[n] ∩ Y•,

where the map Xn → P ′′ is a fibration because f• is a fibration. It remains to show that
P ′′ → P is a fibration, which we will show by showing that MnX• → P ′ is a fibration.
Since MnY• → Λk

+[n] ∩ Y• is the pullback of Yn−1 → Mn−1Y• we get the following
pullback diagram

P ′ MnY• Yn−1

Λk+[n] ∩ X• Λk+[n] ∩ Y• Mn−1Y•.
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Note that the following diagram commutes

Λk+[n] ∩ X• Λk+[n] ∩ Y•

Mn−1X• Mn−1Y•,

so we can also obtain P ′ as the following pullback

P P ′′′ Yn−1

Λk+[n] ∩ X• Mn−1X• Mn−1Y•.

Since MnX• → Λk
+[n] ∩ X• is a pullback of Xn−1 → Mn−1X• we can see the map

MnX → P ′ arising as a pullback as in the following diagram

MnX• Xn−1

P ′ P ′′′ Yn−1

Λk+[n] ∩ X• Mn−1X• Mn−1Y•,

where the map Xn−1 → P ′′′ is a pullback by the fact that f is a pullback. This shows
that MnX• → P ′ is a pullback and hence u is an acyclic fibration with some section s.
We now claim that γ := s ◦ γ′ makes the things we want commute.

mx ◦ γ = mx ◦ s ◦ γ′
= π1 ◦ u ◦ s ◦ γ′
= π1 ◦ γ′
= α

and
fn ◦ γ = fn ◦ s ◦ γ′

= π2 ◦ u ◦ s ◦ γ′
= π2 ◦ γ′
= β

show that this is indeed the case. This finishes the proof.

Lemma 3.27. Let C a path category and f• : X• → Y• an acyclic fibration in Fr C. Then,
the morphism Γ(f•) is a trivial fibration.
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Proof. Consider a commutative square

∂∆n
+ Γ(X•)

∆n
+ Γ(Y•)

in ssSet. This corresponds to a commutative square

1 MnX•

Yn MnY•

α

β

in C. Let
MnX• ×MnY• Yn Yn

MnX• MnY•

a pullback diagram. We have an induced map γ′ := 〈α, β〉 : 1 → MnX• ×MnY• Yn.
We also have an induced map Xn → MnX• ×MnY• Yn, which is a fibration because
f• is a fibration. This map is moreover a weak equivalence by 2-out-of-3; because
MnX• ×MnY• Yn → Yn and Xn → Yn are weak equivalences. This means we can get a
section s : MnX• ×MnY• Yn → Xn, and obtain a filler γ := s ◦ γ′.

Corollary 3.28. Let C a path category and f• : X• → Y• a weak equivalence in Fr C.
Then Γ(f•) is a weak equivalence.

Proof. We factorize f• as a section wf• : X• → Z• of an acyclic fibration g• : Z• → X•
followed by an acyclic fibration pf• : Z• → Y•. The maps Γ(g•) and Γ(pf•) are acyclic
fibrations by Lemma 3.27. By 2-out-of-3 the map Γ(wf•) is one, and hence Γ(f•) is.

We can now prove the main theorem of this section.

Theorem 3.29. Let C a path category. The functor Γ : Fr C → ssSet yields an exact
functor Fr C → ssSetf of path categories.

Proof. We have shown that Γ preserves fibrations. It is moreover clear that the ter-
minal object is preserved. Since pullbacks in both Fr C and ssSet are pointwise, and
the hom functor preserves limits we have that a pullback X• ×Y • ×Z• in Fr C with
components Xn ×Yn Zn is mapped to the pullback Γ(X•)×Γ(Y•) Γ(Z•) with components
Hom(1, Xn)×Hom(1,Yn) ×Hom(1, Zn). We conclude that the functor is exact.
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3.6 Enrichment over semisimplicial sets

In [15] and [14], it is shown that the fibration category of frames in a fibration category
always can be canonically enriched over semisimplicial sets. We will briefly summarize
the construction, and state without proof that this also holds true for path categories.
We moreover show that in the case of path categories all hom-semisimplicial sets are
fibrant.

Recall the pairing K ∩ X• of a finite semisimplicial set and a frame in C as defined in
Section 3.3. We will now extend this pairing in such a way that given finite K and a
frame X• the result XK

• is a frame. In degree n the frame is defined as

(XK
• )n := (∆+[n]⊗K) ∩ X•.

This operation will be the cotensor in the enrichment, and is functorial in both arguments.

By fixing X•, we obtain a functor X
(−)
• which maps colimits to limits because limits

in Fr C are pointwise and the functor − ⊗∆+[n] preserves colimits because it is a left
adjoint.

Let us now define the semisimplicial set Fr C(X•, Y•) corresponding to the morphisms
between two frames X• and Y•. In degree n this is defined as

Fr C(X•, Y•)n := HomFr C(X•, Y
∆+[n]
• ).

That the enrichment is cotensored means that there is a natural isomorphism

Fr C(X•, Y K
• ) ∼= [K,Fr C(X•, Y•)]

where the right hand side denotes the internal hom of the symmetric monoidal structure
on ssSet.

This enrichment satisfies the so-called pullback-cotensor property. This states that for
a monomorphism i : K → L and a fibration f• : X• → Y• the induced map

XL
• → XK

• ×Y K
•
Y L
•

is a fibration, which is an acyclic fibration is either f• or i is a weak equivalence. In
particular this means that for a monomorphism i : K → L and a frame X• the induced
map Xi

• : XL
• → XK

• is a fibration by applying the pullback-cotensor property to the
monomorphism i and the fibration X• → 1. We summarize this in the following definition
of a semisimplicial path category:

Definition 3.30. Let C a path category. We call C a semisimplicial path category if it
carries a semisimplicial enrichment giving the ordinary homsets in degree 0, is cotensored
over finite semisimplicial sets, and satisfies the pullback-cotensor property.

Theorem 3.31. Let C a path category. The category Fr C of frames in C is a semisimplicial
path category.

Proof. Theorem 3.10 and 3.17 in [14].
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The category of semisimplicial path categories and exact functors preserving the
enriched structure form a fibration category:

Theorem 3.32. The category of semisimplicial path categories and semisimplicial exact
functors preserving finite cotensors form a fibration category, where the weak equivalences
are given by weak equivalences on underlying path categories, and fibrations are given by
fibrations on underlying path categories.

Proof. Theorem 4.9 in [15].

Remark 3.33. We mentioned in the beginning of Section 2.4 that Kapulkin and Szumilo
in their paper [15] compare the homotopy theory of fibration categories and tribes. It
turns out that the category of tribes do not form a fibration category, but that the category
of semisimplicial tribes ssTrb do form a fibration category, which is weakly equivalent
to the fibration category of semisimplicial fibration categories ssTrb. However, the
category of tribes Trb can be endowed with the structure of what is called a homotopical
category in which only a class of weak equivalences exists. As homotopical categories,
the categories Trb and ssTrb are weakly equivalent. Similarly for ssFib and Fib. Since
weak equivalences between homotopical categories satisfy 2-out-of-3 and by considering
the following diagram:

ssTrb ssFib

Trb Fib

it follows that Trb and Fib are weakly equivalent

Theorem 3.34. For any two frames X• and Y• in some path category C, the semisim-
plicial set Fr C(X•, Y•) is a semisimplicial Kan complex.

Proof. Let i : Λk
+[n] → ∆+[n] a horn inclusion and let X• and Y• frames in a path

category C. We want to show that the induced map

HomssSet(∆+[n],Fr C(X•, Y•))→ HomssSet(Λ
k
+[n],Fr C(X•, Y•))

is a surjection. By the Yoneda lemma the domain of the map above corresponds to

HomFr C(X•, Y
∆+[n]
• ).

The codomain corresponds to

HomFr C(X•, Y
Λk
+[n]
• )

by the following chain of isomorphisms:

HomssSet(Λ
k
+[n],Fr C(X•, Y•)) ∼= HomssSet(Λ

k
+[0], [∆[n],Fr C(X•, Y•)])

∼= HomssSet(Λ
k
+[0],Fr C(X•, Y

Λk
+[n]
• ))

∼= HomFr C(X•, Y
Λk
+[n]
• ).
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Hence the map induced by the horn inclusion i corresponds to the map

HomFr C(X•, Y
∆+[n]
• )→ HomFr C(X•, Y

Λk
+[n]
• ),

mapping a morphism f• : X• → Y
∆+[n]
• to Y i

•f•. Because i is a monomorphism the map
Y i
• is a fibration by the pullback-cotensor property. It moreover is a weak equivalence

since (Y i
• )0 is a weak equivalence because i is an elementary expansion, and ev0 reflects

weak equivalences. We conclude it is an acyclic fibration and hence has a section

s• : Y
Λk
+[n]
• → Y

∆+[n]
• . We can now conclude that we have surjectivity, because for any

g• : X• → Y
Λk
+[n]
• the map s•g• is mapped to g•.

Remark 3.35. One might be tempted to describe conclude from Theorem 3.34 that
“path categories are enriched over fibrant semisimplicial sets”. However, as ssSetf is not
closed under the geometric product, as discussed in [35], this statement does not make
sense.

3.7 Enrichment over groupoids

Any path category has a natural enrichment over groupoids, as introduced by Den Besten
in [16]. In this section we will review this enrichment. Moreover, we will describe the
fibration category structure of the category GpdCat obtained by Lack’s model structure
on GpdCat as described in [36] and [37]. We will show that the canonical functor
M : Pth→ GpdCat which maps a path category to an object in GpdCat preserves
fibrations, weak equivalences and the terminal object.

Let X,Y two objects in a path category C. We define the groupoid C(X,Y ) as the
category which has as objects the morphisms f : X → Y , and as morphisms equivalence
classes of homotopies H : X → PY identified up to fibrewise homotopy over Y × Y . In
[16] it is shown that this enrichment is independent of the choice of path object.

Theorem 3.36. The enrichment as described above defines a 2-functor M : Pth →
GpdCat.

Proof. Section 3 in [16].

We will not use the higher categorical structure and only focus on the ordinary functor
M : Pth→ GpdCat.

Let us now turn to the model structure on GpdCat. Given a 2-category C, a 1-cell
f : X → Y is an equivalence if there is a 1-cell g : Y → X such that fg and gf are
isomorphic to the identities. One should note that for the enrichment of path categories,
these equivalences are precisely the weak equivalences.

Weak equivalences A strict functor F : C → D between two 2-categories is a weak
equivalence if it is biessentially surjective: for every 0-cell X in D there is some Y
in C and an equivalence f : FY → X. It should moreover be locally an equivalence.
That is, for every two 0-cells A and B in C the functor C(A,B) → D(FA,FB)
should be an equivalence of categories.
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Fibrations A strict functor F : C → D between 2-categories is a fibration if every
equivalence Y → FX in D can be lifted to an equivalence Y ′ → X in C. Moreover,
we need that every invertible 2-cell H : f → Fg in D should be lifted to an invertible
2-cell H ′ : f ′ → g in C.

Cofibrations A strict functor F : C → D between 2-categories is a cofibration if it
has the left lifting property w.r.t acyclic fibrations.

The acyclic fibrations in this model structure are the functors which are surjective on
objects and which are locally surjective on objects and an equivalence.

We see that our definition of a 2-fibration (Definition 2.50) precisely coincides with
the fibrations of path categories which are mapped to a fibration of 2-categories by the
functor M , and hence we obtain the following lemma.

Lemma 3.37. The functor M : Pth→ GpdCat preserves fibrations.

Lemma 3.38. Let F : C → D an acyclic fibration of path categories. Then FX,Y :
C(X,Y )→ D(FX,FY ) is an equivalence of categories.

Proof. We show that FX,Y is essentially surjective, full and faithful. Since F is full,
the functor FX,Y is surjective and in particular essentially surjective. For fullness
of FX,Y suppose that H : FX → F (PY ) is a homotopy between maps F (f) and
F (g). We factorize (f, g) as a weak equivalence w : X → T followed by a fibration
(pf , pg) : T → Y × Y . We obtain the following diagram in D:

FX F (PY )

FT F (Y × Y ),

Fw

H

F (s,t)

F (pf ,pg)

for which there is a diagonal filler H ′ : FT → F (PY ). Because the functor F (Y × Y )
is an acyclic fibration and hence full, we can obtain a morphism H̃ ′ : T → PY which
is mapped to H ′ by F . The morphism H̃ ′ is a homotopy between pf and pg in C. Let

us now consider the map H̃ := H̃ ′w : X → PY . This map is a homotopy between f
and g, and is mapped to H ′F (w) by F . The latter is fibrewise homotopic to H, which
concludes that FX,Y is full. Let us now show that FX,Y is faithful. Suppose we have two
homotopies H,H ′ between maps f and g such that F (H) 'F (Y×Y ) F (H ′). It follows
by Lemma 2.49 that H and H ′ and H are fibrewise homotopic over Y × Y and hence
represent the same equivalence class of homotopies between f and g.

Lemma 3.39. The functor M : Pth→ GpdCat preserves acyclic fibrations

Proof. This follows from Lemma 3.38 and the fact that acyclic fibrations are full and
surjective on objects.

Corollary 3.40. The functor M : Pth→ GpdCat preserves weak equivalences.
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Remark 3.41. It is an open question whether the functor M : Pth → GpdCat
preserves pullbacks along fibrations. Given an exact functor F : C → D and a fibration
G : E → D in Pth, one has to compare the groupoid enriched categories M(C)×M(D)M(E)
and M(C ×D E). By the universal property of the pullback there is a unique map
Ψ : M(C×DE)→M(C)×M(D)M(E) in GpdCat. As pullbacks in GpdCat are computed
pointwise, it follows immediately that on 0- and 1-cells the map Ψ is an isomorphism. The
uncertainty of a hypothetical proof lies in showing that the component Ψ2 is injective;
showing that Ψ2 is well-defined and surjective can be done by the homotopy lifting
properties of the functor π0 : C ×D E → C and π0/(Y,Y ′)×(Y,Y ′) : (C ×D E/(Y,Y ′)×(Y,Y ′))f →
(C/Y )f. Showing that Ψ2 is injective amounts to showing that two pairs of homotopies
(H,H ′) and (K,K ′) in C ×D E between two pairs of maps (f, f ′) and (g, g′) are identified
if and only if they are pointwise identified. As

(C ×D E/(Y,Y ′)×(Y,Y ′))f

is isomorphic to
(C/Y )f ×(D/F (Y ))f (E/Y ′)f

this will follow immediately if one can show that the homotopy relation in a pullback in
Pth is determined pointwise.

3.8 Fundamental groupoid

Given a path category C, we have seen that there are two canonical enrichments of the
category Fr C: one over groupoids and one over semisimplicial sets. In this section we
will compare both enrichments by means of the fundamental groupoid. The fundamental
groupoid was originally defined for a topological space X to be the groupoid consisting
of the points of the spaces and equivalence classes of paths identified up to endpoint
preserving homotopy.

One can make an educated guess and try to define a semisimplicial version of the
fundamental groupoid by taking as objects the vertices and as morphisms the 1-cells
identified up to some notion of endpoint preserving semisimplicial homotopy. It turns out,
as is shown in Section 3.3 of [33], that this construction is well defined if the semisimplicial
set in consideration is fibrant.

In Theorem 3.34 we have shown that for two frames X• and Y• in some category C,
the semisimplicial set Fr C(X•, Y•) is a semisimplicial Kan complex. In Theorem 3.45
we will show that applying the fundamental groupoid to Fr C(X•, Y•), we obtain the
same groupoid as the one you get by considering the canonical enrichment of Fr C over
groupoids.

Before we can define the semisimplicial fundamental groupoid we observe that we can
obtain a semisimplicial version of the sphere S1 as the following pushout:

∆+[0]
∐

∆+[0] ∆+[1]

∆+[1] S1.
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Definition 3.42. Let X a semisimplicial Kan complex. The fundamental groupoid
Π(X) has objects the vertices ∆+[0]→ X and as morphisms between two such vertices
x, y : ∆+[0] → X, we have 1-cells ω : ∆+[1] → X between x and y identified up to
relatedness. Two 1-cells are related if the induced map 〈ω, γ〉 : S1 → X factorises through
some homotopy H : CS1 → X, as in the following diagram:

CS1

S1 X,

H

〈ω,γ〉

where S1 → CS1 denotes the canonical inclusion.

Lemma 3.43. Let Y• a frame in C. The cotensor Y
∆+[1]
• is a path object on Y•.

Proof. We note that because the map ∂∆+[1]→ ∆+[1] is a inclusion, the induced map

X
∆+[1]
• → X

∂∆+[1]
• is a fibration. Also note that X

∂∆+[1]
• = X• ×X• because the pairing

− ∩ X• maps colimits to limits. The components of the fibration X
∆+[1]
• → X

∂∆+[1]
•

are acyclic fibrations because they are induced by inclusions ∆+[0]→ ∆+[1] which are

weak equivalences of semisimplicial sets. In degree 0, the morphism X
∆+[1]
• → X

∂∆+[1]
•

coincides with the map X1 → X0 ×X0. In this map, both components are homotopic by
Lemma 3.3. Because ev0 is homotopy faithful, it follows that both components of the

map X
∆+[1]
• → X• ×X• are homotopic. It follows by Lemma 2.24 that the components

have a common section and hence X
∆+[1]
• is a path object.

Lemma 3.44. Let Y• a frame in C. Let CS1 the cone on S1. Then the cotensor Y CS1

•
is the fibred path object of the fibration Y

∆+[1]
• → Y• × Y•.

Proof. Recall that Y S1

• is isomorphic to the pullback Y
∆+[1]
• ×Y•×Y• Y

∆+[1]
• . The inclusion

S1 → CS1 induces a fibration Y CS1

• → Y S1

• . We want to show that this fibration fits
into a factorization

Y
∆+[1]
• → Y CS1

• → Y S1

•

of the diagonal on Y
∆+[1]
• in (Fr C/Y•×Y•)f. The map Y CS1

• → Y S1

• has two components

Y CS1

• → Y
∆+[1]
• which are induced by the two inclusions ∆+[1] → CS1 which factor

through S1. One can write these inclusions as compositions of elementary expansions, and

hence they induce acyclic fibrations Y CS1

• → Y
∆+[1]
• . By Lemma 2.24 it is sufficient to

show that the components Y CS1

• → Y
∆+[1]
• are fibrewise homotopic over Y

∆+[1]
• → Y•×Y•

to make them fit into a fibrewise path object. Because ev0 is a weak equivalence it is
sufficient to show that the maps are fibrewise homotopic when evaluated at 0, by Lemma
2.49. Observe that the cone CS1 is isomorphic to the following pushout:

Λ0
+[2] ∆+[2]

∆+[2] CS1.
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By applying − ∩ Y• we obtain the pullback

CS1 ∩ Y• Y2

Y2 Λ0
+[2] ∩ Y•,

π0

π1

in which every map is an acyclic fibration because Λ0
+[2] → ∆+[2] is an elementary

expansion. The inclusions ∆+[1]→ CS1 we are interested in factor through the inclusion
∆+[2]→ CS1. In particular this means that we obtain the induced components CS1 ∩
Y• → Y1 as the maps d2π0 and d2π1. The maps coincide on the map Y2 → Λ0

+[2] ∩ Y•
and hence are fibrewise homotopic by Lemma 2.15. Observe that the following diagram
commutes:

Y2 Y1

Λ0
+[2] ∩ Y• Y0 × Y0

d2

and hence we can apply Lemma 2.17 to conclude that the two inclusions are fibrewise

homotopic and hence that Y CS1

• is a fibrewise path object on the fibration Y
∆+[1]
• →

Y
∂∆+[1]
• .

Theorem 3.45. Let C a path category and X• and Y• two frames in C. The fundamental
groupoid Π(Fr C(X•, Y•)) is naturally isomorphic to the groupoid M(Fr C(X•, Y•)).

Proof. The objects of the fundamental groupoid Π(Fr C(X•, Y•)) are the vertices ∆+[0]→
Fr C(X•, Y•), i.e. just the ordinary morphisms X• → Y•. Morphisms between two vertices
f•, g• : X• → Y• are 1-cells ω : ∆+[1] → Fr C(X•, Y•) between f• and g•, identified up

to relatedness. A 1-cell ∆+[1]→ Fr C(X•, Y•) corresponds to a morphism X• → Y
∆+[1]
• ,

whereas the codomain of this map is a path object on Y• by Lemma 3.43. It remains to
show that relatedness coincides with fibrewise homotopy over Y• × Y•.

Suppose two 1-cells ω•, γ• : X• → Y
∆+[1]
• between vertices f• and g• are related. Then

the map 〈ω, γ〉 : X• → Y
∆+[1]
• ×Y•×Y• Y

∆+[1]
• factor through Y CS1

• , which is precisely
the fibrewise path object by Lemma 3.44. Now suppose two 1-cells ω•, γ• are fibrewise
homotopic over Y•×Y•. Because fibrewise homotopy is independent of the choice of path
object there is a homotopy X• → Y CS1

• such that the composition

X• → Y CS1

• → Y
∆+[1]
• ×Y•×Y• Y

∆+[1]
•

precisely is 〈ω•, γ•〉 and hence they are related. This finishes the proof.
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4 Natural numbers, function spaces and
universes

In this chapter we will discuss the homotopy universal constructions which are relevant
for the version of objective type theory we are considering. The first five sections will
all have the same structure: we introduce an object with some homotopy universal
property in a path category, and then show that this property is invariant under weak
equivalences of path categories. In these proofs we will heavily rely on the properties of
acyclic fibrations we have proven in Chapter 2.

In Section 4.6 we will informally discuss the proof for “ordinary” canonicity for
intuitionistic type theory, and the hypothetical proof of homotopy canonicity for objective
type theory.

4.1 Homotopy natural numbers objects

The first objects we will be considering are the so-called homotopy natural numbers
objects. These are the categorical interpretation of the natural numbers type in objective
type theory.

Definition 4.1. A homotopy natural numbers object (hnno) in a path category C consists
of an object N and maps 0 : 1 → N and S : N → N such that for every commuting
diagram

X X

1 N N

p

f

px0

0 S

with p a fibration, there exists a section a : N → P of p, such that a0 'N x0 and
aS 'N fa.

Lemma 4.2. Let F : C → D an acyclic fibration. If C has a hnno, then F preserves it.

Proof. Suppose (N, 0, S) is a hnno in C. Suppose we have a commutative diagram

X X

1 F (N) F (N)

p

f

px0

F (0) F (S)

in D. Use the characterization of acylic fibrations to lift the fibration p : X → F (N) to a
fibration p′ : X ′ → N. We use Lemma 2.56 to lift x0 : 1→ X to a map x′0, similarly we
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lift f : X → X to a map f ′ : X ′ → X ′. Because (N, 0, S) is a hnno we obtain a section
a : N→ X ′ of p′. Now the map F (a) is a section of p, and because F preserves fibrewise
homotopies we have that F (a)F (0) 'F (N) F (x′0) and F (a)F (0) 'F (N) F (f ′)F (a) because
F (x′0) = x0 and F (f ′) = f .

Lemma 4.3. Let F : C → D an acyclic fibration. Let (N, 0, S) a hnno in D. If (N′, 0′, S′)
is mapped to (N, 0, S) by F then (N′, 0′, S′) is a hnno.

Proof. Suppose we have a commutative diagram

X ′ X ′

1 N′ N′
p′

f ′

p′
x′0

0′ S′

in C. It is mapped to a commutative diagram

X X

1 N N

p

f

px0

0 S

in D. Because (N, 0, S) is a hnno there is a section a : N→ X of p such that a0 'N x0

and aS 'N fa. By Corollary 2.57 we lift the section a to a section a′ of p′. By fibrewise
homotopy faithfulness (Lemma 2.49) we have that a′0′ 'N′ x

′
0 because

F (a′0′) = F (a′)F (0′) = a0 'N x0 = F (x′0)

and a similar argument shows a′S′ 'N f
′a′.

Corollary 4.4. Let F : C → D a weak equivalence of path categories, and suppose that
D has a hnno. Then C also has a hnno.

Proof. We factorize F as PW with P : E → D an acyclic fibration and W : C → E a
section of some acyclic fibration G : E → C. By surjectivity and fullness of P we can
obtain an hnno in E which is then preserved by G.

By a similar argument we can conclude that weak equivalences preserve and reflect
hnnos.

4.2 Homotopy exponentials

Homotopy exponentials and homotopy Π-types play the role of a homotopical version of
function spaces in type theory. The homotopy Π-types take dependent types into account
and need additional machinery. The definitions of homotopy exponentials and Π-types
we use here are due to Den Besten and can be found in [16].
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The universal properties are described in terms of properties of certain functors. We
call a functor F essentially injective if for any two objects X and Y we have that X
and Y are isomorphic if FX and FY are. We will be concerned with the following three
types of functors:

e.s. essentially surjective,

e.s.e.i. essentially surjective and essentially injective,

e.s.f. essentially surjective and full.

Before we give the definition of homotopy exponentials we need a few additional results
on the groupoid enrichment of path categories as introduced in Section 3.7. Recall that
for a path category C and two objects Z and X in C, the groupoid C(Z,X) has as objects
the arrows Z → X and as morphisms the homotopies between the arrows identified up to
fibrewise homotopy over X ×X. Given a function f : X → Y there is an induced functor
f ?− : C(Z,X)→ C(Z, Y ). On objects it maps a morphism g : Z → X to fg : Z → Y .
On equivalence classes of homotopies it is defined as follows: a homotopy H is composed
with the lift l arising in the diagram

X PY

PX Y × Y

r

rf

(s,t)

(fs,ft)

to obtain a homotopy lH : Z → PY . This operation is well defined. Without further
ado we introduce our three types of homotopy exponentials.

Definition 4.5. Let X and Y two objects in a path category C. A weak / ordinary /
strong homotopy exponential consists of an object Y X and a map εY : Y X ×X → Y such
that for every object T the composition

C(T, Y X) C(T ×X,Y X ×X) C(T ×X,Y )
−×X εY ?−

is e.s. / e.s.e.i / e.s.f.

Remark 4.6. We remark that if F : C → D is an acyclic fibration of path categories and
X and Y are objects in F , the functor FX,Y is essentially surjective and full by Lemma
4.7. Also note that two maps f, g : X → Y , i.e. two objects in the groupoid C(X,Y ), are
isomorphic if they are homotopic. Together with the observation that the functor F is
homotopy faithful this implies that FX,Y is essentially injective too.

In the proofs we will use the following facts about e.s. and e.s.f. functors.

Lemma 4.7. Let A,B and C be groupoids and F : A → B and G : B → C functors.
The following implications hold:

� If F and G are e.s.(f.), then GF is.
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� If F and GF are e.s.(f.), then G is.

Proof. Lemma 4.1 in [16].

Lemma 4.8. Acyclic fibrations preserve homotopy exponentials.

Proof. Let F : C → D an acyclic fibration. Let X,Y two objects in C such that its
exponential Y X exists. Let T ′ any object in D. By surjectivity write T ′ = F (T ). Consider
the following diagram in Gpd, the category of groupoids:

C(T, Y X) C(T ×X,Y X ×X) C(T ×X,Y )

D(F (T ), F (Y X)) D(F (T )× F (X), F (Y X)× F (X)) D(F (T )× F (X), F (Y )).

F
T,Y X F

T×X,Y X×X FT×X,Y

We will show that if the upper maps compose to an e.s. / e.s.e.i / e.s.f. map, the lower
does. First, we note that by the 2-categorical nature of the functor M : Pth→ Gpd, as
discussed in [16], the diagram commutes. Next, we note that by Remark 4.6 the vertical
maps are all e.s.(f.). By Lemma 4.7 this means that the lower part is e.s.(f.) if the upper
is.

It remains to show that the lower part is e.i. if the upper part is. Suppose f, g :
F (T ) → F (Y X) are such that F (εY )(f × id) and F (εY )(g × id) are isomorphic in
D(F (T )×F (X), F (Y )). In particular, this means that F (εY )(f × id) ' F (εY )(g× id) in
D. By fullness of F there are maps f ′, g′ : T → Y X such that F (f ′) = f and F (g′) = g.
By the commutativity of the diagram we have that

F (εY (f ′ × id)) = F (εY )(f × id)

and
F (εY (g′ × id)) = F (εY )(g × id).

Because FT×X,Y is e.i. by Remark 4.6, the maps εY (f ′×id) and εY (g′×id) are homotopic.
By the fact that the upper part is e.i. it follows that f ′ and g′ are homotopic and hence
f and g are homotopic.

Lemma 4.9. Let F : C → D an acyclic fibration. Let X and Y objects in C. If F (X)F (Y )

and εF (Y ) is any type of homotopy exponential, and XY and εY are mapped to respectively

F (X)F (Y ) and εF (Y ), then XY and εY form a homotopy exponential in C

Proof. For any object T in C we consider the following commutative diagram:

C(T, Y X) C(T ×X,Y X ×X) C(T ×X,Y )

D(F (T ), F (Y X)) D(F (T )× F (X), F (Y X)× F (X)) D(F (T )× F (X), F (Y )).

F
T,Y X F

T×X,Y X×X FT×X,Y

Note that we can identify F (Y X) with F (Y )F (X). We will show that the upper part of
the diagram is respectively e.s., f. or e.i if the lower part is. This will imply that XY and
εY form a weak / ordinary / strong homotopy exponential if F (X)F (Y ) and εF (Y ) does.
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Essentially surjective Let f : T × X → Y any map in C. Because the lower
part of the diagram is essentially surjective there is a map f ′ : F (T ) → F (Y X)
such that F (εY )(f ′ × id) is isomorphic to F (f) in D(F (T )× F (X), F (Y )), i.e. the
maps F (εY )(f ′× id) and F (f) are homotopic as maps F (T )×F (X)→ F (Y ) in D.
Because F is full there exists some map f ′′ : T → Y X such that F (f ′′) = f ′. The
diagram commutes and hence we have that

F (εY (f ′′ × id)) ' F (f)

in D. Since F is homotopy faithful, or FT×X,Y is essentially injective, it follows
that εY (f ′′ × id) is homotopic to f .

Full Let f, g : T → Y X parallel morphisms in C and let H : T × X → PY a
representative of a morphism between εY (f × id) and εY (g× id) in C(T ×X,Y ), i.e.
a homotopy between them. Now F (H) is a morphism in D(F (T )× F (X), F (Y )).
Because the diagram commutes we again have

F (εY (f × id)) = εF (Y )(F (f)× id)

and
F (εY )(g × id)) = εF (Y )(F (g)× id).

By fullness of the bottom part of the diagram there is a homotopy between F (f)
and F (g) which is mapped to a homotopy between F (εY (f × id)) and F (εY (g× id))
fibrewise homotopic to F (H). By surjectivity on objects and fullness of F there
is some H ′′ : T → P (Y X) such that F (H ′′) = H ′. The upper part of the diagram
maps H ′′ to something which is then mapped by FT×X,Y to something which is
fibrewise homotopic to F (H). Because FT×X,Y is faithful we conclude that the
upper part is full.

Essentially injective Suppose f, g : T → Y X are mapped to homotopic maps
εY (f × id) and εY (g × id). By commutativity of the diagram, identifying F (εY )
with εF (Y ), and exactness of F it follows that εF (Y )(F (f)× id) and εF (Y )(F (g)× id)
are homotopic. By essentially injectivity of the bottom part of the diagram we
conclude that F (f) and F (g) are isomorphic in D(F (T ), F (Y X)), i.e. F (f) ' F (g).
Because F is homotopy faithful we conclude that f ' g.

Corollary 4.10. Let F : C → D a weak equivalence of path categories, and suppose that
D has all homotopy exponentials. Then C has all homotopy exponentials.

Proof. Identical to the proof of Corollary 4.4.

Moreover, weak equivalences preserve and reflect homotopy exponentials.

49



4.3 Homotopy Π-types

To define homotopy Π-types we need to work with the category C/X , which is not
necessarily a path category as not every object is fibrant. However, given two objects
g : Z → X and f : Y → X, we can still endow C/X(g, f) with a groupoid structure if the
codomain is fibrant.

Definition 4.11. Let f : X → I and g : I → J be fibrations in C. A weak / ordinary /
strong homotopy Π-type of f and g consists of a fibration Πgf : ΠgX → J and a map
εX : (ΠgX)×J I → X over I such that for every map h : T → J the composition

C/J(h,Πgf) C/I(h∗f, h∗Πgf) C/I(h∗f, f)
−×JI εX?−

is respectively e.s., e.s.e.i or e.s.f.

Lemma 4.12. Let F : C → D an acyclic fibration. Let f : X → J any map and
g : Y → J a fibration. The induced map

Ff,g : C/J(f, g)→ D/F (J)(F (f), F (g))

is essentially surjective, essentially injective and full.

Proof. We show all three properties.

Essentially surjective This follows from Lemma 2.56.

Full Let h, k : X → Y two maps over J . Let H : F (X) → F (PIY ) a fibrewise
homotopy between F (h) and F (k). By Lemma 2.56 we can lift the fibrewise
homotopy to H ′ : X → PIY which is a fibrewise homotopy between h and k.

Essentially injective Acyclic fibrations are fibrewise homotopy faithful by Lemma
2.49.

Lemma 4.13. Acyclic fibrations preserve homotopy Π-types.

Proof. Let F : C → D an acyclic fibration. Given fibrations f : X → I and g : I → J
in C such that its Π-type exists, and given any h′ : T ′ → F (J) we get the following
commutative diagram by lifting h′ to be a map h : T → J :

C/J(h,Πgf) C/I(h∗f, h∗(Πgf)) C/I(h∗f, f)

D/F (J)(F (h), F (Πgf)) D/I(F (h∗f), F (h∗(Πgf))) D/F (I)(F (h∗f), f).

We need to show that the lower composition is e.s. / e.s.e.i / e.s.f if the upper is. However,
this part of the proof consists of arguments which are identical to the ones used in the
proof of Lemma 4.8.
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Lemma 4.14. Let F : C → D an acyclic fibration. Let f : X → I and g : I → J fibrations
in C. Let ΠF (g)F (f) : ΠF (g)F (X)→ F (J) and εF (X) : (ΠF (g)F (X))×F (J) F (I)→ F (X)
a weak / ordinary / strong homotopy Π-type in D. Let Πgf : ΠgX → J a fibration
mapped to ΠF (g)F (f) and let εX : ΠgX ×J I → X such that F (εX) = εF (X). Then Πgf
and εX form a weak / ordinary / strong homotopy Π-type in C.

Proof. We consider the commutative diagram

C/I(h,Πgf) C/I(h∗f, h∗(Πgf)) C/I(h
∗f, f)

D/F (J)(F (h), F (Πgf)) D/F (I)(F (h∗f), F (h∗(Πgf))) D/F (I)(F (h∗f), F (f)),

where we identify F (Πgf) with ΠF (g)F (f). We need to show that the upper composition
is e.s. / e.s.e.i. / e.s.f. if the lower is. However, these proofs are all identical to the ones
in Lemma 4.9.

Corollary 4.15. Let F : C → D a weak equivalence of path categories, and suppose that
D has all homotopy Π-types. Then C has all homotopy Π-types.

Proof. Identical to the proof of Corollary 4.4.

Moreover, weak equivalences preserve and reflect homotopy Π-types.

4.4 Homotopical universes

Universes in type theory are types whose terms are types, closed under certain properties.
In this section we will introduce the notion of a homotopical universe in a path category
due to Van den Berg in [38], and show that they are closed under weak equivalences of
path categories. To do this we need some additional terminology.

Definition 4.16. Let
A X

B Y

f

a

p

g

a commutative diagram with p a fibration. The diagram is called a homotopy pullback if
the map 〈f, a〉 : A→ B ×Y X is a weak equivalence.

Definition 4.17. Let p : E → U a fibration. A fibration f : A → B is called p-small
if it arises as a homotopy pullback of p. The fibration p is a homotopical universe if
the p-small maps are closed under composition, homotopy Π-types, and it contains all
isomorphisms.

Lemma 4.18. Let F : C → D an acyclic fibration. Let p : A→ B a fibration in D and
let p′ : A′ → B′ mapped to p. Then F reflects p-small maps. I.e., if a map f ′ : A′ → B′

is mapped to a p-small fibration f = Ff ′, then f ′ is p′-small.
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Proof. Let f ′ and p′ as above. There is a homotopy pullback square

A E

B U.

γf

f p

χf

Use fullness of F to obtain the map χf ′ : B′ → U ′ such that F (χf ′) = χf . Then one
can use fullness to obtain 〈f, γf 〉′ : A′ → B′ ×U ′ E′ such that F (〈f, γf 〉′) = 〈f, γf 〉. Now
because F (πB′〈f, γf 〉′) = f , the triangle

B′ ×U ′ E′

A′ B′

πB′

f ′

〈f,γf 〉′

commutes up to homotopy by homotopy faithfulness of F . Applying Proposition 2.23

yields a map 〈̃f, γf 〉 satisfying πB′ 〈̃f, γf 〉 = f ′. Write γ′Y for πE′ 〈̃f, γf 〉 and note that

〈f ′, γf ′〉 = 〈̃f, γf 〉. We obtain a commuting diagram

A′ E′

B′ U ′.

f ′

γ′Y

p′

χf ′

The induced map 〈f ′, γ′Y 〉 is homotopic to the map 〈f, γf 〉′ and hence a weak equivalence,
because F (〈f, γf 〉′ = 〈f, γf 〉 and F reflects weak equivalences. We conclude that f ′ is
p′-small.

It is clear that an acyclic fibration preserves small maps relative to a fibration, since it
preserves homotopy pullbacks. In fact, every exact functor preserves small maprs relative
to a fibration.

Lemma 4.19. Let F : C → D an acyclic fibration. Then F preserves homotopical
universes.

Proof. Let p : X → Y a homotopical universe in C. We show that the F (p)-small maps
are closed under homotopy Π-types, and leave the proofs of the other properties for the
reader. Let f and g fibrations and Πgf its homotopy Π-type. Because F reflects homotopy
Π-types we can construct the homotopy Π-type Πg′f

′ such that F (Πg′f
′) = Πgf and

Ff ′ = f and Fg′ = g. Because F reflects F (p)-small maps, f ′ and g′ are p-small and
hence Π′gf

′ is p-small because p is a homotopical universe. The functor F clearly preserves
p-small maps and hence Πg′f

′ is F (p)-small.

Lemma 4.20. Let F : C → D an acyclic fibration. Then F reflects homotopical universes
in the following sense.
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Proof. Suppose a fibration p : X → Y is mapped to a homotopical universe F (p) :
F (X) → F (Y ). We will show that p is a homotopical universe. In Lemma 4.18 we
have shown that F (p)-small maps are reflected. By this it follows immediately that the
p-small maps are closed under composition and Π-types. We will give the prove that
p-small maps are closed under composition. Let f : A→ B and g : B → C two p-small
maps. Then F (f) and F (g) are F (p)-small and hence F (g)F (f) are. Because F reflects
F (p)-small maps it follows that gf is p-small.

Corollary 4.21. Let F : C → D a weak equivalence of path categories, and suppose that
D has a homotopical universe. Then C has a homotopical universe.

Proof. Identical to the proof of Corollary 4.4.

Moreover, weak equivalences preserve and reflect homotopical universes.

4.5 Univalence

Univalence plays an important role in homotopy type theory and is moreover the axiom
by which canonicity is lost, urging a notion of homotopy canonicity to arise. We will give
a definition of a univalent fibration in a path category, which is introduced by Van den
Berg in [38]. The definition relies on the following lemma, which can be found in the
same paper.

Lemma 4.22. Let p : X → Y a fibration, and let f, g : Z → Y two homotopic maps.
Then the homotopy H : Z → PY induces a weak equivalence between f∗p and g∗p in
(C/Z)f.

Proof. We have the two pullbacks

Z ×fY X X

Z Y

πf
Z

πf
X

p

f

and

Z ×gY X X

Z Y.

πg
Z

πg
X

p

g

Let Γ a transport structure on p. We define a map Z ×fY X → Z ×gY X by

〈πfZ ,Γ〈π
f
X , Hπ

f
Z〉〉.

Let us show that this map exists. First we show that 〈πfX , Hπ
f
Z〉 : Z ×fY X → X ×Y PY

exists. This holds true because

pπfX = fπfZ = sHπfZ

and hence by the universal property a map to the pullback is induced. Now the map
〈πfZ ,Γ〈π

f
X , Hπ

f
Z〉〉 exists too because

gπfZ = tHπfZ = tπ2〈πfX , Hπ
f
Z〉 = pΓ〈πfX , Hπ

f
Z〉,
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where π2 is as in Definition 2.20. That the map is a morphism over Z is clear as

πgZ〈π
f
Z ,Γ〈π

f
X , Hπ

f
Z〉〉 = πfZ .

We now want to show that it is a weak equivalence. By composing H with the lift l in
the following diagram:

X PX

PX X ×X

r

r (t,s)

(s,t)

we obtain a homotopy between g and f , inducing a morphism

〈πgZ ,Γ〈π
g
X , lHπ

g
Z〉〉 : Z ×gY X → Z ×fY X

in (C/Z)f. We will now show that the composition of these maps is homotopic to the
identity. I.e. we want

〈πgZ ,Γ〈π
g
X , lHπ

g
Z〉〉〈π

f
Z ,Γ〈π

f
X , Hπ

f
Z〉〉

to be homotopic to the identity. By Lemma 2.18 it satisfies to show that

πfX 'Y Γ〈Γ〈πfX , Hπ
f
Z〉, lHπ

f
Z〉.

By properties of transport (Lemma A.6 in [7]) the right hand side is fibrewise homotopic
to

Γ〈πfX , µ(HπfZ , lHπ
f
Z)〉,

where µ is as in Lemma A.2 in [7]. Because µ(1, l) is fibrewise homotopic to the identity we

get that we are fibrewise homotopic to the map Γ〈πfX , Hπ
f
z 〉 Because all maps coinciding

on composition with an acyclic fibration are fibrewise homotopic over it, and applying
Lemma 2.18 again, we get that 〈πfX , Hπ

f
Z〉 is fibrewise homotopic to 〈πfX , rpπ

f
X〉 and

hence we get
Γ〈πfX , Hπ

f
Z〉 'Y Γ〈πfX , rpπ

f
X〉 = Γ〈id, rp〉πfX 'Y πfX

concluding the proof.

A fibration is univalent if every weak equivalence between such two pullbacks can be
obtained by the procedure as in Lemma 4.22:

Definition 4.23. Let C a path category. A fibration p : X → Y is called univalent if for
every pair of maps f, g : Z → Y and a weak equivalence w : f∗p→ g∗p over Z, there is a
homotopy H between f and g inducing w.

Lemma 4.24. Let p : X → Y a fibration. Let f, g : Z → X two maps which are
homotopic. Let H,K homotopies between f and g which are fibrewise homotopic over
Y × Y . Then the induced maps f∗p→ g∗p are fibrewise homotopic over Z.
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Proof. The maps H and K are fibrewise homotopic, hence the maps HπfZ and KπfZ are.

By Lemma 2.18 the maps 〈πfY , Hπ
f
Z〉 and 〈πfY ,Kπ

f
Z〉 are. Because Γ preserves fibrewise

homotopies the maps Γ〈πY , HπfZ〉 and Γ〈πY ,KπfZ〉 are. By Lemma 2.18 again this suffices
to show that the induced maps between the pullbacks are fibrewise homotopic.

Lemma 4.25. Acyclic fibrations of path categories preserve univalent fibrations.

Proof. Let p : X → Y in C a univalent fibration. Let f, g : Z → FY two maps in D
such that f∗p and g∗p are connected by some weak equivalence w. We use fullness and
surjectivity of F to obtain f ′, g′ : Z ′ → X. We use fullness of F/Z : (C/Z)f → (D/F (Z))f

to obtain a weak equivalence w′ : (f ′)∗p→ (g′)∗p mapped to w. By univalence of p we
get H : Z ′ → PX inducing w′ up to fibrewise homotopy. It is clear that FH induces w
up to fibrewise homotopy.

Lemma 4.26. Acyclic fibrations of path categories reflect univalent fibrations.

Proof. Let p : X → Y univalent in D and let p′ : X → Y a fibration such that
F (p′) = p. Let f ′, g′ : Z ′ → Y ′ maps whose pullbacks along p′ are connected by a weak
equivalence w′. Write F (f ′) := and F (g′) := g. The weak equivalence F (w′) := w
now connects the pullbacks f∗p and g∗p since F is exact. By univalence of p there is a
homotopy H : X → PY inducing the weak equivalence w. Let us now factorize the map
(f, g) : X → Y × Y to obtain the following commutative diagram:

X PY

T Y × Y.

H

wfg (s,t)

(pf ,pg)

Write K : T → PY for a diagonal filler. Note that by the lifting property for factorizations
we lift (pf , pg)wfg to (pf ′ , pg′)wfg′ . Since F/Y×Y is full, we can obtain K ′ : T ′ → PY ′

such that F (K ′) = K. The map K ′ is a homotopy between pf ′ and pg′ . It is clear that
K ′wfg′ now defines a homotopy between f ′ and g′. The homotopy K ′wfg′ defines a weak
equivalence u between the pullbacks by Lemma 4.22. One can check that F preserves
transport. It follows by exactness that the map F (u) is the same weak equivalence
as the one induced by the homotopy Kwfg′ , as F (K ′) = K and F (wfg′) = wfg. Now
since Kwfg′ is fibrewise homotopic to H, it follows by Lemma 4.24 that the weak
equivalence F (u) between the pullbacks which is induced by the homotopy Kwfg′ is
fibrewise homotopic to the weak equivalence induced by H, which is w. By Lemma 2.49
it now follows that u and w′ are fibrewise homotopic and hence that p′ is univalent.

Corollary 4.27. Let F : C → D a weak equivalence of path categories, and suppose that
D has univalent fibration. Then C has a univalent fibration.

Proof. Identical to the proof of Corollary 4.4.

Moreover, weak equivalences preserve and reflect univalent fibrations.
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4.6 On homotopy canonicity

We conclude this chapter with an informal exposition of canonicity proofs for type theory,
and we will explain how the results of the previous chapters help with a proof of homotopy
canonicity for objective type theory.

Let us first sketch the proof of canonicity for intuitionistic type theory with a natural
numbers type as given in [11]. We refer to Theorem 20.1 in [11] and the sections afterwards
for the full proof. Write T for the type theory of their interest. The syntactic category
S(T ) in their case forms a topos. Moreover, it is initial in the category of categories
modelling T and functors preserving all the logical structure, the logical functors. This
means that given another category C with an interpretation of T in C there exists a
unique functor F : S(T )→ C preserving all the structure.

An example of such a model of T is the category of sets. In particular the natural
numbers type is modelled in Set by its natural numbers object N. Let Γ : S(T ) → N
the global sections functor, mapping an object X in S(T ) to HomS(T )(1, X). We can
now glue along Γ to obtain a new topos GL(Γ), the gluing category of Γ. The objects of
GL(Γ) are triples (X,A, f) with X being a set, A an object of S(T ) and f a morphism
from X to Γ(A). Morphisms between such triples (X,A, f) and (Y,B, g) are pairs of
morphisms (α : X → Y, β : A→ B) such that following square commutes:

X Y

Γ(A) Γ(B).

f

α

g

Γ(β)

The category GL(Γ) is again a topos, and it inherits the logical sturcture of S(T ) and
Set such that the forgetful functor GL(Γ) → S(T ) is a logical functor. Let N denote
the natural numbers object in S(T ). Then the natural numbers object in GL(Γ) is the
triple (N ,N, f) where f : N→ HomS(T )(1,N ) maps a natural number n in N to the map
Sn(0) : 1→ N in Γ(N ).

Because S(T ) is initial we obtain a section G : S(T )→ GL(Γ) of the forgetful functor.
Now let x any term of natural numbers type in T . This induces a map x : 1 → N in
S(T ). The section G maps x to a morphism (αx, βx) in GL(Γ). Note that βx = x. We
get the following commutative diagram:

1 N

HomS(T )(1, 1) HomS(T )(1,N )

αx

id f

Γ(βx)

in Set. Since HomS(T )(1, 1) = 1 the map Γ(βx) maps the single element to x : 1→ N .
Because the diagram commutes x : 1→ N is identical to the image of the single element
under the map fαx. Because αx is just a natural number in N this means that fαx maps
the unique element to Sn(0) for some n. We conclude that x is in canonical form and
that our intuitionistic type theory T satisfies canonicity.
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The global sections functor does not suffice for path categories as the category of
sets is not a model of objective type theory. The canonical path category structure on
Set has all morphisms as fibrations and isomorphisms as weak equivalences, it is clear
that in this case Γ does not preserve weak equivalences.

The idea of Sattler and Kapulkin therefore is to replace the path category C by
the category of frames Fr C, and replace the set valued global sections functor by the
semisimplicial set valued global sections functor we introduced in Section 3.5. By the work
we have done in this chapter, and by the fact that the evaluation functor ev0 : Fr C → C
is an acyclic fibration, the category of frames Fr C inherits all the logical structure that
C has. By the thesis of De Boer [25] the gluing category of an exact functor is a path
category again, and many of the homotopy universal constructions have been proven to
be available in the gluing category if they are in the domain and the codomain. It is
plausible that this holds for every homotopy universal construction.

There are now various ways to continue the proof. It is mentioned in the slides
by Sattler and Kapulkin that semisimplicial sets do not model homotopy type theory.
However, as simplicial sets do model homotopy type theory as proven in [5], they solve
the problem by postcomposing with the functor R as in Theorem 3.12. It is still unknown
whether objective type theory can be modelled in semisimplicial sets. It seems likely that
it can be interpreted in simplicial sets by similarity of objective type theory and homotopy
type theory. Because the functors relating semisimplicial sets and simplicial sets are
weak equivalences, semisimplicial sets do have all the same homotopy universal objects
as simplicial sets. The problem, however, of modelling type theory in semisimplicial sets
arises in certain syntactical aspects of modelling type theory which are outside the scope
of this thesis.

Independent of whether we consider Γ or RΓ we can now glue along this functor. By
the thesis of De Boer [25] the result is again a path category. Moreover, De boer has
shown that homotopy natural numbers objects are available in the gluing category if
they are in the domain and codomain. It is likely that similar results can be obtained for
the other constructions studied in this section.

This is where the homotopy theory ends and where syntactical arguments are needed
to continue. In particular we need to obtain intiality results for the syntactic category
of objective type theory in the category of path categories modelling objective type
theory. Although by the nature of objective type theory it is much more likely that we
have initiality up to homotopy. Proving syntactic results like these takes a lot of work.
A small example of this syntactic hassle can be found in [26], where Shulman proves
homotopy canonicity for certain truncated versions of homotopy type theory. Glancing
at Chapter 4 and in particular definitions 4.1 and 4.6 can give the reader an idea of the
difficulty and bookkeeping involved in these syntactic aspects. For now we conclude that
the homotopy theory involved in the proof idea of Sattler and Kapulkin indeed can be
perfectly translated to the case of path categories and that we have a solid foundation
for a potential proof of homotopy canonicity.
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5 On ∞-groupoids

Combining Theorem 3.23 and Lemma 3.25 can be interpreted as a proof to the statement
that “every object in a path category is an internal ∞-groupoid”, if one takes (semisim-
plicial) Kan complexes as models of ∞-groupoids. This perfectly fits the concept that
“types are∞-groupoids” as introduced in [4]. In this chapter we will study another notion
of internal ∞-groupoid, and show that every object in a path category also is an internal
∞-groupoid with respect to this definition.

The original proof in [4] has been simplified by Bourke in [39], in which another
definition, due to Maltsiniotis in [19], is used as model of ∞-groupoids. An attempt to
translate the proof of Bourke to the situation of path categories has been made in [17],
but this turned out to be unsuccesful. However, using techniques introduced by Henry in
[40] and [18] we are able to complete the proof.

5.1 Grothendieck ∞-groupoids

In this section we will introduce the specific model of ∞-groupoid, and give references
for proofs in either [17] or [39].

Definition 5.1. The category of globes G is the category freely generated by the graph

0 1 2 · · ·
σ0

τ0

σ1

τ1

σ2

τ2

with the relations σnσn−1 = τnσn−1 and τnσn−1 = τnτn−1.

We remark that this means that HomG(n,m) = {σn,m, τn,m} for n < m where σn,m
and τn,m are compositions of respectively σis and τis. We call the objects in the presheaf
category [Gop,Set] globular sets, and objects in the category [Gop,Set] globular objects
in C. Because G is an inverse category the category [Gop, C]f,h of fibrant, homotopical
globular objects in C forms a path category by Proposition 2.32.

Let us unpack the definition of a fibrant homotopical globular object in C. Such an
object X• consists of objects Xn for every n with boundary maps sn, tn : Xn+1 → Xn

which are weak equivalences. Being fibrant says that these boundary maps factorize
through a fibration pn : Xn+1 →Mn+1X•, where Mn+1X• denotes the matching object
of X• at n. Explicitly, this matching object arises as the following pullback:

Mn+1X• Xn

Xn MnX•.

qn

kn

pn−1

pn−1
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Example 5.2. The fibrant homotopical globular objects in a path category C which will
play a role later in this chapter are the so called iterated path objects. Given an object
X in C we will construct this globular object X? inductively. Start by setting X0 := X
and choosing X1 := PX for some path object on X, and let the boundary maps be the
source and target maps of PX. Because M1X? = X0×X0 this makes p0 = (s0, t0) into a
fibration. Now suppose we have defined X? up to Xn with a fibration pn−1 : Xn →MnX?.
Then Mn+1X? is the pullback Xn ×MnX? Xn. We now let Xn+1 be the path object on
the fibration pn−1 : Xn →MnX? in (C/MnX?

)f. In other words, we obtain a factorization

Xn Xn+1 Mn+1X?
rn pn

of the diagonal 〈id, id〉 : Xn → Mn+1X?. The boundary maps Xn+1 → Xn are now
obtained by composing pn with the projections Mn+1X? → Xn.

One might think that many of the arguments on frames in path categories can be
applied to the category of homotopical fibrant globular objects in a path category. This is
not the case, for we can show that the evaluation functor is not always a weak equivalence.

Lemma 5.3. The evaluation functor [Gop,Top]f,h → Top is not a weak equivalence.

However, it is true that ev0 always is a fibration. The proof of this is routine. Before
we prove Lemma 5.3 we first give the following characterizations of path categories for
which the evaluation functor from homotopical fibrant diagrams of the inverse category

• •

is a weak equivalence. Before we state the lemma, we remark that it is routine to show
that the functor ev0 : (C⇒)f,h → C is a fibration of path categories.

Lemma 5.4. The following statements are equivalent:

(i) The functor ev0 : (C⇒)f,h → C is a weak equivalence.

(ii) All parallel acyclic fibrations in C are homotopic.

(iii) Every automorphism which is a weak equivalence in C is homotopic to the identity.

(iv) All parallel weak equivalences in C are homotopic.

Proof. We show the implications.
(i) =⇒ (ii). Let f, g : X → Y parallel acyclic fibrations. We factorize the map

(f, g) : X → Y × Y as a weak equivalence w : X → T followed by a fibration (pf , pg) :
T → Y ×Y . By 2-out-of-3 the maps pf and pg are acyclic fibrations as well. In particular
this means that (pf , pg) : T → Y × Y is an object in (C⇒)f,h. As ev0 : (C⇒)f,h → C is
an acyclic fibration, it is in particular full. Let PY any path object on Y with source
and target maps (s, t) : PY → Y × Y . This gives an object in (C⇒)f,h as well. We can
use fullness on the the identity id : Y → Y to obtain some map l : PY → T such that
pf l = s and pgl = t. As s ' t we have pf ' pg and in particular f ' g.
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(ii) =⇒ (iii). Let w : X → X a weak equivalence. We factorize w as a weak
equivalence u : X → T followed by an acyclic fibration p : T → X. The map u is a
section of some acyclic fibration g : T → X. The acyclic fibration p : T → X has some
section s. As p and g are parallel acyclic fibrations they are homotopic and in particular
pu and gu are homotopic. As pu = w and gu = id it followed that w ' id.

(iii) =⇒ (iv). Let w, u : X → Y parallel weak equivalences. Let u−1 the homotopy
inverse of u. That is, we have uu−1 ' id and u−1u ' id. However, because all
automorphic weak equivalences are homotopic to the identity we also have wu−1 ' id
and u−1w. This means that u−1 becomes an inverse of w in Ho(C) and hence u and w
are in the same equivalence class and hence homotopic.

(iv) =⇒ (i). We remark that all parallel weak equivalences being homotopic implies
that every object (s0, t0) : X1 → X0 ×X0 has the structure of a path object on X0. As
s0 and t0 are homotopic, this follows from Lemma 2.24. It is clear that ev0 reflects weak
equivalences by 2-out-of-3. We show the characterization of Lemma 2.42 holds. Let
f0 : X0 → Y0 any fibration, such that Y0 is part of a diagram (sY , tY ) : Y1 → Y0 × Y0.
In particular Y1 is a path object on Y0. Write rY for the constant path map of the
path object Y1.Now let X1 a path object on X0 with source and target maps sX , tX and
constant path map rX . The diagram

X0 Y1

X1 Y0 × Y0

rX

rY f0

(sY ,tY )

(f0×f0)(sX ,tX)

has a diagonal filler f1 which lifts f0 to a morphism in (C⇒)f,h.

Proof of Lemma 5.3. Let C any path category. We show that ev0 : [Gop, C]f,h → C being
a weak equivalence implies the properties in Lemma 5.4. Let f, g : Y → X parallel weak
equivalences. We obtain a homotopical globular object X̃• by setting X̃0 := X, and
X̃n := Y for n ≥ 1. For the face maps we set (s0, t0) := (f, g), and (sn, tn) := (id, id)

for n > 1. The diagram X̃• is not at all fibrant. However, we can factorize X̃• → 1 as
a weak equivalence w• : X̃• → X• followed by a fibration X• → 1. The argument is
identical to the factorization in Theorem 3.23. Write (sn, tn) for the boundary maps of
X•. In particular we get that s0w1 = f and t0w1 = g. Let X? the iterated path object
on X, with boundary maps (s, t) : X1 → X0. Because ev0 is an acyclic fibration it is
in particular full, and hence there is a map l : X• → X? with l0 = id. As we now have
sl = s0 and tl = t0, and s ' t, we have that s0 ' t0 and in paticular f ' g.

However, it is not at all the case that in every path category all parallel weak equiv-
alences are homotopic. A counterexample is given by considering the antipodal map
S2 → S2 and the identity on S2, which are both homotopy equivalences but not homo-
topic.

Let us continue with the preliminaries for the definition of a Grothendieck ∞-groupoid.
We will introduce the notion of a table of dimensions, which can be used to index certain
limits.
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Definition 5.5. A table of dimensions ñ is a sequence of natural numbers ñ = (n1, . . . , nk)
such that k is odd, and ni−1 > ni < ni+1 for i even.

Every such table of dimensions defines a subcategory Gñ as follows. If ñ = (n1, . . . , nk),
then Gñ is the category

n2 n4

n1 n3

τ σ τ · · ·
nk−1

nk−2 nk.

τ σ

Given a globular object A : Gop → C, we call the limit of the diagram Añ : (Gop)ñ → C
an A-globular product. We write A(ñ) for this limit. For a functor D : G→ C we call the
colimit of the diagram Gñ → C a D-globular sum.

The category of presheaves on G is complete and cocomplete, and hence the the
category [Gop,Set] has all y-globular sums, where y denotes the Yoneda embedding. We
write Θ0 for the full subcategory of [Gop,Set] consisting of the y-globular sums. The
Yoneda embedding now factorizes as

G Θ0 [Gop,Set]D

where D maps n to the limit of the table of dimensions (n). Let A be any globular object
in C such that C has all A-globular products. Then by Lemma 2.1 in [39] there exists an
unique extension

Θop
0

Gop C

A(−)
Dop

A

where A(−) preserves globular products.

Definition 5.6. A globular theory consists of a category T for which the objects are the
same as the objects in Θ0, and a functor J : Θop

0 → T which is the identity on objects
and preserves globular products.

Given a globular theory J : Θop
0 → T, we write Mod(T, C) for the full subcategory of the

functor category [T, C] consisting of the globular product preserving functors. There is a
forgetful functor U : Mod(T, C)→ [Gop, C] mapping X : T→ C to X ◦ J ◦Dop : Gop → C.

Definition 5.7. Let A a globular object in C and let T a globular theory. We call an
object X in Mod(T, C) a T-algebra structure on A if U(X) = A.

Definition 5.8. Let A a globular object in C. A parallel pair of n-cells in A is a pair of
morphisms f, g : X → A(n) for some object X, such that snf = sng and tnf = tng or
n = 0. A lifting for this parallel pair is a map h : X → A(n+ 1) such that sn+1h = f
and tn+1h = g.
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Definition 5.9. Let A a globular object in C. We call A contractible if each parallel pair
has a lifting. A globular theory J : Θop

0 → T is contractible if J ◦Dop is contractible.

Definition 5.10. A Grothendieck ∞-groupoid is a T-algebra for a contractible theory
J : Θop

0 → T.

Let us state our main theorem.

Theorem 5.11. Let C a path category. For any object X in C, the iterated path object X?

has the structure of a Grothendieck ∞-groupoid. That is, there is a contractible globular
theory J : Θop

0 → T, and a T-algebra Y : T→ C such that Y ◦ J ◦Dop = X?.

We will now describe a canonical way to obtain a theory from a globular object A by
means of its endomorphism theory End(A). Its objects are Θ0 and we have

End(A)(ñ, m̃) = C(A(ñ), A(m̃)).

This yields a factorization

Θop
0 End(A) CJA KA

of A(−). The functor JA is the identity on objects and preserves globular products and
hence is a globular theory on A.

The functor KA maps a table of dimensions to its limit. Both JA and KA preserve
globular products and hence KA gives a End(A)-algebra structure on A. We have the
following characterization of contractible endomorphism theories.

Lemma 5.12. Let C a category and A a globular object in C such that C has all
A-globular products. Then End(A) is contractible iff every parallel pair of the form
f, g : A(ñ)→ A(m), with ñ some table of dimensions, has a lift.

Proof. Lemma 4.1 in [39], which is worked out explicitly in Lemma 22 in [17].

5.2 Homotopy coslice categories

In this section we will give two alternative notions of the homotopy coslice category of a
path category, one due to Lobski and one due to Henry. These categories will play an
important role in the proof given in the last section that every object in a path category
is an internal ∞-groupoid.

Definition 5.13. Let C a path category and X an object in C. We write X � C for
the homotopy coslice category. Its objects are equivalence classes of maps X → Y
identified up to homotopy. A morphism between two equivalence classes [n] : X → Y
and [m] : X → Z is a morphism f : Y → Z such that the following diagram commutes
up to homotopy.

X

Y Z

n m

f

where n and m are any choice of representatives.
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In [17] it is shown that this is a well defined category, independent of choice of represen-
tatives.

Let X? an iterated path object of some object X. We can factorize X? as follows

Gop X � C C.R U

The functor R is defined on n as the weak equivalence rnrn−1 · · · r0 : X0 → Xn. It maps
σn to sn and τn to tn.

Lemma 5.14. Let X an object in a path category C and let X? its iterated path object
and R : Gop → X � C as above. The homotopy coslice category X � C has all R-globular
products, and U : X � C → C preserves them.

Proof. Proposition 12 and Lemma 26 in [17]. We will give a small part of the argument
for it will be important in the proof of Theorem 5.11. In the proof one uses induction
on the length of the table of dimensions to show the existence of limits. For the
base case the limit trivially exists. Now assuming that the limit exists for a table of
dimensions ñ = (n1, . . . , nk), one adds two integers and obtains table of dimensions
ñ+ = (n1, . . . , nk, nk+1, nk+1). Omitting the maps out of X, the limit X?(ñ) now arises
as the pullback

X(ñ+) X?(nk+2)

X?(ñ) X?(nk) X?(nk+1).

s

t

Definition 5.15. Let C a path category and X an object in C. We write CX for the
strong homotopy coslice category. Its objects are fibrations (p0, p1) : A → B ×X such
that p1 is an acyclic fibration. Morphisms are pairs (f : A→ A′, g : B → B′) such that
the square

A A′

B ×X B′ ×X

f

(p0,p1) (p′0,p
′
1)

g×id

commutes.

There is a canonical way to relate the two versions of the homotopy coslice category.
Given an equivalence class [n] : X → Y in X � C we can obtain an object in CX by
factorizing the map (id, n) : X → X × Y . The fibration P → X × Y is now an object in
CX . Now let (p0, p1) : A → B ×X an object in CX . The map p1 has a section s. We
obtain an object in X � C by composing s with p0.

Lemma 5.16. Let C a path category and X an object in C. Then CX is a path category
with weak equivalences pointwise, and fibrations the Reedy fibrations for the square without
X.
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Proof. Consider the category C•→•, consisting of fibrations in C. Because • → • is an
inverse category C•→• is a path category. Now consider the path category (C•→•/X→1)f

of fibrations in C•→• with codomain X → 1. We claim that this category is canonically
isomorphic to the category consisting of fibrations of the form A→ B ×X with A and
B arbitrary objects in C and X fixed. Given such a fibration with codomain X → 1:

A X

B 1,

we obtain a fibration A→ B×X by the fact that fibrations in C•→• are Reedy fibrations.
Similarly, every fibration A → B ×X determines a fibration in C•→• between A → B
and X → 1.

It remains to show that the path category of fibrations A→ B×X is closed under the
extra assumption that the component A→ X is a weak equivalence too. In particular,
we need to show that it is closed under taking pullbacks, and path objects exist. We
show that path objects exist and leave the other part to the reader. However, let
(p0, p1) : A → B × X an object and let (p′0, p

′
1) : A′ → B′ × X its path object. The

constant path map (r0, r1) with components r0 : A→ A′ and r1 : B → B′ consists of weak
equivalences. Since p′1r0 = p1 it follows that p′1 is a weak equivalence by 2-out-of-3.

Lemma 5.17. The functor ev : CX → C mapping a fibration (p0, p1) : A→ B ×X to B
is a fibration of path categories.

Proof. Consider the codomain functor cod : C•→• → C evaluating a fibration A→ B to
its codomain B. It is routine to show that this functor is a fibration, and hence induces
a fibration

cod/X→1 : (C•→•/X→1)f → (C/ cod(X→1))f

where we can identify (C/ cod(X→1))f with C. The functor cod/X→1 is a fibration by
Lemma 2.46, and hence the evaluation functor mapping A→ B ×X to B is a fibration.
It is routine to show that by restricting this evaluation functor to the objects in which
the component A→ X is a weak equivalence, the functor is still a fibration.

Note that it is evident that ev also reflects weak equivalences.

5.3 Homotopy initial objects

Definition 5.18. Let C a path category. We call an object X in C homotopy initial if
for every diagram

A

X B

p

f

with p a fibration, there exists a lift l : X → A making the triangle commute.
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Lemma 5.19. Let X homotopy initial. Let f, g : X → Y parallel maps and let p : Y → I
a fibration such that pf = pg. Then f 'I g.

Proof. The diagram

PIY

X Y ×I Y〈f,g〉

has a lift.

In particular this shows that every pair of maps with homotopy initial domain are
homotopic.

Lemma 5.20. Let X any object in C. The path object fibration (s, t) : PX → X ×X is
homotopy initial in CX .

Proof. Proposition 4.4.4 in [18]. We nevertheless include the proof, for it is a bit brief in
the mentioned reference. Let us consider

PX A A′

X ×X B ×X B′ ×X

(s,t)

f

(p0,p1)

f ′

(p′0,p
′
1)

g×id g′×id

where (f ′, g′) is a fibration in CX . We want to show the existence of a lift making the
triangle commute. First remark that f ′ : A′ → A is an acyclic fibration in C(X) and
hence has a section u : A → A′ over C(X). We obtain a map uf : PX → A′ making
the upper triangle commute. Let r : X → PX the constant path map. The map
v := p′0ufr : X → B′ makes the bottom triangle commute because

g′v = g′p′0ufr
= p0f

′ufr
= p0fr
= gsr
= g.

However, this is does not fit into a morphism together with uf . Observe that the following
square commutes

X A′

PX B′ ×B A

r

ufr

〈p′0,f ′〉

〈vs,f〉

because
vsr = v = p′0ufr
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and
fr = f ′ufr.

We now obtain a lift l : PX → A′ making the lower right triangle commute. Now we
have

f ′l = f

and
p′0l = vs.

It follows that
p′1l = p1f

′l = p1f = t

and hence (l, v) is the lifting witnessing PX → X ×X being homotopy initial.

5.4 Grothendieck ∞-groupoids in path categories

In this section we will prove Theorem 5.11. We will do this by showing that X? factorizes
as

Gop D CR U

for some category D such that D has all R-globular prodcuts, the functor U preserves
them, and the endomorphism theory JR : Θop

0 → End(R) is contractible. Because if
this is the case, then we have indeed have a ∞-groupoid structure on X? as UKR is an
End(R)-algebra structure on X?. We will first show that the theorem holds for a simple
case.

Lemma 5.21. Let X be an homotopy initial object in C and let X? the iterated path
object on X. Then X? is an internal ∞-groupoid.

Proof. Consider the factorization:

Gop X � C

C

R

X?
U

we have shown that X � C has all R-globular products and U preserves them. It remains
to show that End(R) is contractible. Consider any diagram

X0 Xm+1

Xñ Xm

rñ

rm0

sm tm
f

g
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such that (sm−1, tm−1)f = (sm−1, tm−1)g. There is an induced map 〈f, g〉 : Xñ →
Mm+1X?, and hence by homotopy initiality a lift l : X0 → Xm+1 such that 〈sm, tm〉l =
〈f, g〉rñ. This yields a diagram

X0 Xm+1

X(ñ) Mm+1X?

l

which commutes strictly. And hence giving us a fibrewise homotopy H : X(ñ)→ Xm+1

between f and g.

Lemma 5.22. Let F : C → D a fibration of path categories. Let X in C and let (FX)?
an iterated path object on F (X) in [Gop,D]f,h. Then there is an iterated path object X?

on X in [Gop, C]f,h such that F (X?) = (FX)?.

Proof. We assume that (FX)? is constructed as in Example 5.2. Then (FX)1 can be
lifted by the lifting property for factorizations. Now assume we have lifted up to degree
n− 1. The factorization of the image of the diagonal

F (〈id, id〉) : F (Xn−1)→ F (Xn−1 ×Mn−1X? Xn−1)

lifts to a factorization of 〈id, id〉.

We can now prove our theorem.

Proof of Theorem 5.11. Let PX → X × X a path object on X and let X? : Gop → C
an iterated path object on X. Apply Lemma 5.22 to obtain an iterated path object
(PX → X ×X)? in CX . We get a factorization

Gop CX C(PX→X×X)? ev

of X?. We now factorize the iterated path object (PX → X ×X)? and obtain

Gop (PX → X ×X) � CX CX C.R U ev

By Lemma 5.20 and the argument in Lemma 5.21 we have that the endomorphism theory
JR is contractible. By Lemma 5.14 the category (PX → X ×X) � CX has all R-globular
products. The functor U preserves them because of Lemma 5.14. The functor ev also
preserves them because it preserves pullbacks, and the globular products are inductively
defined as pullbacks.
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6 Conclusion and further research

In this thesis we have studied path categories and in particular the fibration category of
path categories. We have shown that many of the homotopy theoretic components of a
proof of homotopy canonicity claimed by Sattler and Kapulkin could be translated to
the case of path categories. Besides these type theoretic motivated questions we have
established results on enrichments of path categories and on internal ∞-groupoids.

We end with some pressing questions left unanswered in this thesis.

� First and foremost there is the remaining part of the proof of homotopy canonicity
for objective type theory. Can we work out the syntactical aspects of the proof as
described in Section 4.6?

� Is there a characterization of the acyclic fibrations in Pth for which sections exist?
Is there some notion of “cofibrant” path categories? Can we obtain a subcategory
P̃th of Pth such that P̃th becomes a path category itself?

� In [15] it is shown that the fibration categories of semisimplicial fibration categories
and semisimplicial tribes are weakly equivalent. Since path categories can be
“squeezed” in between these two structures, we conjecture that both structures are
also weakly equivalent to the fibration category of path categories.

� It seems reasonable that the functor M : Pth → GpdCat is an exact functor.
This follows immediately if one can show that the homotopy relation in a pullback
of path categories is determined pointwise.

� We can extend the notion of frames in a path category to a functor Fr : Pth→ Pth
which takes a path category C to its category of frames. Since every category of
frames is enriched over ssSet this functor induces a functor F̃r : Pth→ Cat(ssSet)
of categories enriched over ssSet. Often, if M is a symmetric monoidal category,
the category Cat(M) can be endowed with a model structure. See for example
[41] or [42]. Although ssSet does not carry a full model structure, it is plausible
that Cat(ssSet) inherits its right semimodel structure. See [31] for this semimodel
structure. We conjecture that taking the subcategory of fibrant objects for this
semimodel structure on Cat(ssSet) makes Cat(ssSet)f into a path category. More-
over, the functor F̃r : Pth → Cat(ssSet)f of path categories might be exact or
almost exact as in the case of the functor M : Pth→ Gpd. A natural follow-up
question is whether the fundamental groupoid functor Π : ssSetf → Gpd induces
an exact functor Cat(ssSet)f → GpdCat of path categories. By Theorem 3.45
this would give us two naturally isomorphic functors Π ◦ F̃r and Fr ◦M .
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Populaire samenvatting

Intüıtionistische typentheorie is een formeel systeem dat als alternatief voor verzamelin-
genleer kan dienen als fundament van de wiskunde. In de typentheorie bestuderen we
zogenaamde typen en termen. Een type kan je zien als een verzameling, en een term
als een element van een bepaald type. Als een term x tot type X behoort schrijven
we dat als x : X. In tegenstelling tot in de verzamelingenleer behoort iedere term tot
één en slechts één type. Als we bijvoorbeeld kijken naar het getal 3, zien we deze in de
verzamelingentheorie terug in meerdere verzamelingen: het is een element van N en Z,
maar ook van de verzameling van alle priemgetallen of van alle veelvouden van 3. In de
typentheorie zit dit net wat anders; we kunnen een term niet los zien van zijn type. Zo
zijn de termen 3 : N en 3 : Z daadwerkelijk verschillende termen die niet met elkaar in
vergelijking te brengen zijn in het systeem van typentheorie. Een andere onderscheidende
eigenschap van intüıtionistische typentheorie ten opzichte van verzamelingenleer is dat alle
termen en alle typen expliciet geconstrueerd worden. De termen van type N bijvoorbeeld
worden volledig geconstrueerd door de term 0 te introduceren, en verder een opvolgerterm
S(n) : N te introduceren voor iedere term n : N. Als we nu eisen dat N het kleinste type
is dat 0 en al zijn opvolgers bevat, krijgen we de gebruikelijke notie van de natuurlijke
getallen. Dit is een constructivistische manier van het definiëren van de natuurlijke
getallen. Een voordeel hiervan is dat intüıtionistische typentheorie zich goed leent om
computerprogramma’s te schrijven die de correctheid van bewijzen kunnen testen.

Net als andere fundamenten van de wiskunde probeert typentheorie een zo groot
mogelijke hoeveelheid wiskundige concepten te beschrijven. Eén van de belangrijkste
gevolgen hiervan is dat men proposities of wiskundige uitspraken als typen wilt zien. De
termen van een dergelijk type is dan een bewijs van de correctheid van de propositie. Een
belangrijk voorbeeld hiervan is het identiteitstype: gegeven twee termen a en b van een
type X, bestaat het identiteitstype IdX(a, b) uit bewijzen dat a en b gelijk zijn als termen
van type X. Omdat IdX(a, b) zelf weer een type is, kunnen we dit itereren: gegeven
twee bewijzen γ en ω dat a en b gelijk zijn construeren we een type IdIdX(a,b)(γ, ω) dat
bewijzen bevat dat de bewijzen γ en ω gelijk zijn.

Er gebeurt iets magisch als men een type probeert voor te stellen als een topologische
ruimte en een term van dat type als een punt in de ruimte. Voor twee termen a, b van type
X kan men nu het identiteitstype IdX(a, b) interpreteren als de ruimte van paden van a
naar b in X. Gegeven twee van die paden γ en ω kunnen we IdIdX(a,b)(γ, ω) interpreteren
als homotopieën tussen de paden γ en ω. We zien dat types op deze manier een hele rijke
meetkundige structuur krijgen.

In deze scriptie kijken we naar bepaalde modellen van intüıtionistische typentheorie.
In het bijzonder bestuderen we de implicatie van de meetkundige structuur van typen
voor de modellen van typentheorie.
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